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Abstract. The paper presents a comprehensive review of learning methods used
to solve various problems in ad-hoc networks. The learning methods are classi-
fied according to learning mechanisms and problems solved. Nine representative
approaches are discussed in more detail.

1 Introduction

Since their emergence in the 1970s, wireless networks became increasingly popular in the
area of telecommunications. As a fixed access to the global computer network — the
Internet — becomes common, the researchers and industry efforts aim to make computer
networking pervasive and ubiquitous.

One way to achieve this is to build ad-hoc networks. A basic mobile ad-hoc network
(called MANET [9]) is a set of wireless mobile nodes that form dynamically a temporary
network without using any existing infrastructure. Each node of such network can be
autonomous and self-configurable hence no centralized administration is needed. It is also
common that communication between the nodes can be indirect, namely, every node can
also act as a wireless router and can be used as an intermediate node on a path from a
source to a destination. Many variations of this structure are also possible. The ad-hoc
network can be a part of an existing fixed network structure (hybrid ad-hoc networks
[24]) or other highly capable infrastructure such as mesh networks [2] or cellular networks.
Sensor networks [1] can be also identified as a sort of ad-hoc networks.

Solving problems in ad-hoc networks is a challenging task due to their highly dynamic
environment and many constraints (capacity, energy, etc). On the other hand, there is a
strong need for development because of many potential application areas like commercial
networks, military, emergency services and many others. These two facts make ad-hoc
networks a very desired, demanding and interesting field of research.

The main aim of this paper is to review the learning methods that can be successfully
applied to solve typical ad-hoc networks problems. The additional objectives of this
review are:
• to show the motivation of using learning methods in ad-hoc networks,

• to classify the learning approaches according to learning mechanisms and problems
being solved,

• to show the efforts of Artificial Intelligence community in the field of ad-hoc net-
works.



The paper is organized as follows. Section 2 provides a general overview of learning
methods in ad-hoc networks. This overview presents the major motivations and a basic
classification of methods. Different learning approaches are presented in the next three
sections. In Sec. 3, the reinforcement learning mechanism is briefly described and five
RL based methods for solving different problems are discussed. Two ant-based routing
algorithms, for pure ad-hoc networks and for hybrid networks, are presented in Sec. 4.
In Sec. 5 other learning approaches are described: a learning automata based approach
(Sec. 5.1) and a supervised learning approach (Sec. 5.2). We will conclude our review
in Sec. 6.

2 Learning methods in ad-hoc networks

It is commonly known that the ad-hoc network makes a very demanding environment.
There are many motivations for using learning approaches in such networks. The need
of high adaptation abilities is probably the strongest one. Ad-hoc networks are dynamic,
fast changing systems of unknown and changing structure and parameters. Adaptive
learning structures seem to be a very adequate solution for such systems. Moreover,
a non-deterministic and complex behavior of ad-hoc networks makes it difficult or even
impossible to use classical methods. On the other hand, the utility of learning approaches
in communication networks has already been proved for fixed networks [22].

Several categories of learning mechanisms can be distinguished in ad-hoc networks,
namely the reinforcement learning (Sec. 3), SWARM intelligence (Sec. 4), learning
automata (Sec. 5.1), supervised learning (Sec. 5.2) and other, including immune systems
and genetic algorithms.

We can also group the learning approaches by the problems they solve, and they
include routing (Secs. 3.1, 3.5, 4.1, 4.2), QoS provisioning (Sec. 3.2), energy management
and topology control, node’s movement prediction (Sec. 5.1), reliability optimization and
preventing malicious node (Secs. 3.3, 5.2).

3 Reinforcement learning based methods

Reinforcement learning (RL) techniques are based on interactions between an agent(s)
and an environment. In every state, the agent chooses an action according to his present
policy and receives a reinforcement from the environment evaluating his actions. On
the basis of the reinforcement and the state reached after taking the action according
to agent’s policy, the agent modifies its policy to increase its chance of attaining its
goal, which is typically the maximization of the discounted sum of all reinforcements.
There exists many learning algorithms which are modifications of the basic RL technique.
The first applied to routing in telecommunication networks was Q-Routing proposed by
Littman [4].

In this section we introduce five RL based methods applied to solving four different
problems in ad-hoc networks.

3.1 Routing

The problem of finding the best routes from a source node to a destination node is a
basic issue in a communication network. In ad-hoc networks the problem can be reduced



to finding the neighborig node that would be the best intermediate node on the path to
the destination (in terms of the given metrics). We chose LQ-Routing algorithm [30] as a
prominent example of a reinforcement learning approach to routing in ad-hoc networks.
LQ-Routing can be viewed as a combination of Q-Routing and Destination-Sequenced
Distance-Vector algorithm (DSDV) [23], which is known as a typical proactive routing
protocol for mobile ad-hoc networks.

In DSDV, routing updates are propagated periodically by each host as advertisements.
Each advertisement is marked with a sequence number to avoid an infinite circulation of
advertisements. In the original Q-Routing algorithm, Q-value Qx(y, d) is defined as the
expected routing time from the current node x to the destination node d through the
selected neighbor node y. This value is stored in the routing table and used to select the
next hop as a part of the routing policy. The message delivery process is as follows. When
a host x receives a packet P destined for d, it selects a neighbor y such that Qx(y, d) is
minimal over all neighbors, and sends it out to y. Upon receiving the packet, y sends
back the value of minz∈Ny

{Qy(z, d)}, where Ny denotes the set of neighbors of y. Then
x updates its new estimate of Qx(y, d), namely:

Qx(y, d)← (1− α)Qx(y, d) + α{Qy(z, d) + qy + γ}, (1)

where qy denotes the expected waiting time in the FIFO queue, γ denotes the expected
transmission delay between any two neighboring hosts, and α is the learning rate. The
update mechanism is in fact more complex, to include certain randomness that enables
for exploration of the environment.

LQ-Routing associates Q-values acquired by the learning process in Q-Routing with
the estimated message delivery times. The lifetime is introduced to avoid a degradation
of the convergence speed of the underlying learning process, which is caused by the
dynamic changes in ad-hoc networks. A path lifetime, PLx(y, d), measures the stability
of a route from x to the destination d through the neighbor y and is updated due to the
number of successful advertisement transmissions from y to x. The Q-value is slightly
modified to use the path lifetime:

LQx(y, d) =
Qx(y, d)

max{ǫ, PLx(y, d)}
, (2)

where ǫ is a small constant value. The neighbor with the smallest LQ-value is selected.
Path lifetime values are propagated by advertisements with consecutive numbers as-
signed, similarly to the mechanism used in DSDV. By combining DSDV with Q-Routing,
the routing policy is adaptively acquired from dynamically changing environment.

Performance of the proposed scheme was simulated in NS2 environment. The results
indicate that LQ-Routing may outperform DSDV under heavy load levels, regardless of
the mobility of the nodes. There are still some open issues, like a more realistic path
lifetime evaluation.

There are also other RL approaches to solving the routing problem in ad-hoc net-
works, including Q-Routing inspired reactive routing scheme [8], a path discovery schemes
[31, 32], power-aware routing scheme [15], SAMPLE routing scheme [12], and QMAP
multicast routing scheme [29].



3.2 QoS provisioning

Quality of Service provisioning is another problem of ad-hoc networks that can be
solved using the reinforcement learning approach. We present as an example the Wire-

Fitted Reinforcement Learning Provisioning (WFRLP) scheme proposed in [36].
WFRLP is a joint bandwidth allocation and buffer management scheme for QoS pro-

visioning in Differentiated Services framework in wireless ad-hoc networks. The system
is modeled as a Semi-Markov Decision Process (SMDP) and the RL algorithm is used
to maximize the average long term reward and to minimize QoS violations at the same
time.

Suppose there are K classes of network services in the system. Each class i defines a
minimum amount of bandwidth bi,min, and the absolute packet delay di and a normalized
loss li (i.e. packet buffer loss or dropping) constraints: di < di,max and li < li,max. The
state descriptor is defined as:

S = [b1, n1, b2, n2, ..., bK , nK ], (3)

where bi is the current bandwidth used by class i, and ni is the current number of pack-
ets in the i-th class queue. The following system events for the state transitions were
identified: a) changes in the routing path, b) MAC layer notifications, such as transmis-
sion failures and c) packet arrivals. When any of these events occurs, the bandwidth is
allocated and the buffer management is performed. The action is defined as a vector:

a = [ab1, ad1, ab2, ad2, ..., abK , adK ], (4)

where abi is the bandwidth level allocated to class i, and adi is the number of packet
buffer drops for class i. The reward function combines the objective of maximizing the
average long term reward with minimizing the average QoS violations. Additional specific
objectives are introduced to avoid changes of the current service rate allocation and to
avoid dropping traffic.

To solve the problem of bandwidth allocation and buffer management, a model-free RL
algorithm known as the Semi-Markov Average Reward Technique (SMART) is applied.
Action values Q(st, at) are estimated by using the temporal difference method. The
action with the highest value is performed in a given state, with a small probability of
exploration. If action at is chosen at t-th decision period at state st, the corresponding
Q(st, at) is updated as follows:

Qnew(st, at) = (1− αt)Qold(st, at) + αt{r(st+1, st, at)− σtτt

+ max
at+1∈A

Qold(st+1, at+1)}, (5)

where αt is the learning rate parameter, r(st+1, st, at) is the actual cumulative reward
earned between two successive decision epochs starting in state st, with action at and
ending in state st+1, and τt is the time difference between state st and st+1. The reward
rate σt is updated according to:

σt = (1− βt−1)σt−1 + βt−1

T (t− 1)σt−1 + r(st+1, st, at)

T (t)
, (6)

where βt is the learning rate parameter, and T (t) is the total time spent in all visited
states until the t-th decision period. To facilitate the convergence of the RL algorithm a
novel function approximation technique (wire-fitted CMAC) is used.



Simulation performed in NS2 environment indicates that WFRLP is suitable for fast
and real-time learning and is able to attain robust convergence. In comparison with the
heuristic mechanism built in NS2 (JoBS), a better average reward is achieved.

QoS provisioning may be also improved by using specialized routing schemes. Two
QoS routing mechanisms based on RL are introduced in [14] and [28].

3.3 Preventing malicious nodes in ad hoc networks

Maneenil and Usaha [19] propose a RL based method of building a reputation scheme
for selecting neighboring nodes in a path search. The method uses an on-policy Monte
Carlo (ONMC) methodology, where sample episodes are used to estimate the value func-
tion.

In each episode, a path to the destination is searched for. Each node maintains the
reputation information to all of its neighboring nodes in a form of reputation values.
Reputation values are quantized and form a discrete state space. An action is defined as
choosing the neighbor for further transmission. In each following node, the neighbor is
selected according to reputation values, and the process is repeated until the destination
is found or the maximum count of hops is reached. If the route search is successful, a
constant positive reward is assigned to every node on all successful paths. Otherwise, a
null reward is assigned to all involved nodes.

Experimental results show that this approach can achieve up to 89% increase in
throughput for the static topologies in comparison with the reputation scheme using a
fixed threshold. Up to 29% increase is achieved for dynamic topologies.

3.4 Mobilized ad-hoc networks

Yu-Han Chang [7] deals with a problem of mobilized ad-hoc networks, where the
nodes movements are controlled. The problem can be devided into two subproblems: the
routing problem in ad-hoc networks and the problem of finding a nodes movement policy
that maximizes network connectivity.

Chang proposes a RL approach to solve both routing and node control problems.
A slightly modified Q-Routing [4] is used for routing, and Q-Learning [35] is applied
for mobility control. The learning process consists of two phases: the node movement
problem is handled off-line, and then the acquired movement policy is used during the
execution phase.

Q-Routing is adapted to dynamically changing topology by two simple modifications.
The action’s value is set to infinity when communication with a neighbor is lost, and is set
to 0 when a new neighbor appears. The movement policy problem is seen as a partially-
observable Markov decision process solved with Q-Learning. Each node accesses only
the local network state observations (neighboring nodes and their connections) and can
choose one of complex actions (e.g., randomly explore, circle around a node in search
for more connections, etc.). The reward corresponds to the percentage of successful
transmissions.

The simulations show that the acquired policy is better than other known movement
policies and better than a hand-coded policy (provided that the same information is
given).



3.5 Routing in Cognitive Packet Networks

Cognitive Packet Networks (CPN, [16]) are networks in which intelligent capabilities
are concentrated in the packets, rather than in the nodes and protocols. Packets within a
cognitive packet networks make decisions (e.g. routing decisions) themselves. Executable
code and data needed for decision making are embedded into the packets. Nodes only
serve as buffers, mailboxes and processors that can be used by the cognitive packets.

In [16] it is shown how learning can support intelligent behavior of cognitive packets.
Authors deal with the routing problem in ad-hoc networks. Random neural networks
are used as a decision model and a RL technique is applied to learn a decision policy.
Simulation results show that applying learning can improve the overall performance of
the CPN.

4 SWARM Intelligence methods

The Ant Colony Optimization (ACO) metaheuristic was inspired by the behavior of ants
[11]. This multi-agent approach solves many discrete optimization problems, like the
shortest path problem or the traveling salesman problem. In 1996 and 1998 the first ant
routing algorithms were proposed for telecommunication networks [22].

4.1 Routing

AntHocNet [10] is a hybrid multipath ant routing algorithm for mobile ad-hoc net-
works. The multipath routing problem is the problem of finding multiple paths from
a source node to a destination node and distributing the traffic between these paths
according to their quality. AntHocNet does not maintain the paths to all possible desti-
nations at all times, but only sets up paths when they are needed (reactive phase) and
then monitors these path as long as the transmission continues (proactive phase).

When the source node s starts communication with the destination node d while
not having an appropriate routing information, it broadcasts a reactive forward ant F s

d .
The reactive ant is further unicast or broadcast at each node, depending on whether
the routing information is available, and its goal is to find a destination d. The routing
information is represented by a pheromone value T i

nd ∈ R which estimates a quality of
the path from the source i to the destination d through the neighbor n. The next hop is
chosen according to the probability

pnd =
(T i

nd)
β1

∑

j∈Ni
d
(T i

jd)
β1

, β1 ≥ 1, (7)

where β1 is the exploration parameter and N i
d denotes the set of neighboring nodes

over which a path to d is known. Each forward ant stores its path details. When the
destination is reached, the forward ant is transformed into the backward ant and travels
back using exactly the same path. In each intermediate node i, the pheromone values
T i

nd are updated according to

T i
nd = γ T i

nd + (1 − γ) τ i
d , γ ∈ [0, 1], (8)

where

tid =

(

T i
d + h Thop

2

)−1

, (9)



T i
d is the traveling time estimated by the ant, h is the number of hops, Thop is a fixed

value of the time to take one hop in unloaded conditions, and γ is the learning parameter.
The nodes in AntHocNet forward data stochastically, according to the probabilities

similar to (7), but with a higher exponent β2 ≥ β1. During data transmission, a proactive

forward ant is generated every n-th data packet. Proactive ants act similar to the reactive
ants, serving two purposes: they monitor the existing paths and explore new paths.
Additional mechanisms are built in for link failures management (failure notification
messages and repair ants) and neighborhood monitoring (periodic hello messages).

Simulations performed in [10] compare AntHocNet with AODV, which is known as a
typical reactive routing protocol for ad-hoc networks. The results show that AntHocNet
outperforms AODV in simulation scenarios with highly dynamic topology. AntHocNet
achieves lower delay and higher delivery ratio. However, there are some open issues like
limiting the routing overhead and improving proactive information exchange.

There are also other known SWARM intelligence routing algorithms for ad-hoc net-
works. Two ant-based routing algorithms are proposed in [3] and [37]. Topology control
algorithm is introduced in [27]. A GPS routing algorithm is proposed in [6].

4.2 Routing in hybrid networks

In [24], an ant routing algorithm ANSI is proposed for hybrid ad-hoc networks. Such
networks consist of a highly capable infrastructure such as a wired network, a mesh
network or a cellular network, and a set of mobile nodes that build an ad-hoc network.
Mobile nodes can communicate with the fixed nodes via gateways.

Only the reactive routing is performed in the ad-hoc sections of the network. The main
difference in comparison to AntHocNet is that only a single backward ant is generated
(only by the first forward ant). This means that only one route is established, what should
result in lower contention in the mobile part of the network. In addition to the reactive
route discovery, hello messages are periodically generated, that contain information about
the network load level.

In highly capable sections of the network, additional proactive routing is performed
apart from the reactive path discovery. Non-mobile nodes exchange information about
their connections and about mobile nodes in their range, so they can assist the reactive
routing process within the mobile nodes when possible. Non-mobile nodes can also
perform a stochastic multipath routing.

Simulation results are promising, especially for hybrid networks. ANSI is able to
effectively utilize high capable links and therefore to outperform AODV.

5 Other learning approaches

5.1 Learning automata

A learning automata to solve the problem of cache allocation for web services for an
individual user is introduced in [17]. Each user movements are predicted, based upon a
learning automata scheme, and the cache is allocated according to the predicted user’s
location.

Learning Automata (LA) are finite state adaptive systems that interact continuously
with an environment. Through a probabilistic trial-and-error response process, they learn
to choose or adapt to the behavior that generates the best response. To use LA for the



path prediction problem, the space is divided into hexagonal cells and a state transition
matrix is defined. Each entry of this matrix contains the following information: a previous
cell id, a current cell id, a future cell id, a time slot, a probability value, and a time stamp.
The probability value measures the likelihood that the user, previously located at the
previous cell, migrates from the current cell to the future cell within a specific time slot.
Hence, the state of the process is defined as a triplet of the previous cell, the current cell,
and the time slot.

In the first step of the learning process, an input is provided to the LA from the
environment. This input triggers one of the possible responses from the LA. The envi-
ronment receives the response and then provides a feedback to the LA. Such feedback is
used by the LA to update its state transition matrix and improve its behavior. When the
LA selects the right response (the prediction is accurate), the positive feedback received
by the environment causes the respective state transition to be rewarded, and otherwise
it is penalized, according to:

transition (i→ j) received positive feedback :
{

Pij = Pij + γ(1− Pij),

Pik = Pik(1− γ), k 6= j;

transition (i→ j) received negative feedback :
{

Pij = Pij − γ(1− Pij),

Pik = Pik(1 + γ), k 6= j;
(10)

where γ is a design parameter, 0 < γ < 1.

Simulations show that this method can achieve up to 70% accuracy of the first hit
after 8-9 weekes of training.

LA can be also used to solve other problems of ad-hoc networks. In [33] authors
introduce a learning automata based approach for adaptive selection of the congestion
window size for the TCP protocol. In [20] a learning automata based adaptive MAC
protocol is proposed. Other LA-based approaches may be found in [13, 21].

5.2 Supervised learning

The goal of supervised learning is to predict the output value based on an input vector
[34]. Learning is performed on a set of training samples. In [34] it is shown that the
supervised learning can be used to solve the problem of link quality estimation in sensor
networks.

Some features characterizing a node (e.g. buffer size, signal level, etc.) were chosen
and a set of samples is gathered for different load levels. These samples are then used in
the off-line training process. Estimated link quality classifiers are built that can be further
used for the on-line link quality estimation. Simulations suggest that this supervised
learning framework can help to make routing and reliability decisions in sensor networks.

Other application of supervised learning can be found in [5], where this methodology
is used for intrusion detection in mobile ad-hoc networks.



6 Conclusions

In this paper we made a comprehensive review of learning methods used within the
wide area of ad-hoc networks. We categorized learning approaches according to learning
mechanisms and problems solved. Nine representative approaches were presented in more
detail.

The review does not cover all the learning methodologies used in ad-hoc networks.
For instance, other methodologies include back propagation learning [26], evolving fuzzy
neural networks [18] used to solve the routing problem, and immune system applied to
nodes misbehavior detection [25].
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