Knowledge Reuse for an Ensemble
of GP-Based Learners

Wojciech Jaskowski, Krzysztof Krawiec, Bartosz Wieloch*

Institute of Computing Science, Poznan University of Technology, Poznan, Poland

Abstract We propose a method of knowledge reuse for an ensemble of genetic
programming-based learners solving a visual learning task. First, we introduce
a visual learning method that uses genetic programming individuals to repre-
sent hypotheses. Individuals-hypotheses process image representation composed
of visual primitives derived from given training images that contain objects to be
recognized. The process of recognition is generative, i.e., an individual is sup-
posed to restore the shape of the processed object by drawing its reproduction
on a separate canvas. This canonical method is in the following extended with a
knowledge reuse mechanism that allows a learner to import genetic material from
hypotheses that evolved for other decision classes (object classes). We compare
the performance of the extended approach to the basic method on a real-world
tasks of handwritten character recognition, and conclude that knowledge reuse
leads to significant convergence speedup and reduces the risk of overfitting.

1 Introduction

Standard machine learning (ML) algorithms do not accumulate knowledge when faced
with consecutive learning tasks, and work with fixed learning biases. The ability to
detect and reuse universal background knowledge (a.k.a. common-sense knowledge), or
more specific domain-related knowledge, would speed up the convergence of the learning
process, reduce the risk of overfitting, and keep down the number of required training
examples. Thus, the ability of knowledge reuse is essential for further progress in ML
and is quoted among its most challenging and important issues [13].

There are several reasons for the inability of most of the standard ML systems to iden-
tify and reuse knowledge fragments. Firstly, in the most popular paradigm of inductive
learning from attributed examples, it is difficult to identify universal knowledge (a.k.a.
inductive bias in inductive learning). Secondly, knowledge is in general difficult to mod-
ularize or transfer. For instance, there is little chance for a fragment of a neural network
to be useful at another location of the same network, or a different network delegated to

*Work supported by KBN grant no. 91-0001R. The computations were performed in Poznan Super-
computing and Networking Center

solve another learning task. This is also due to the fact that, in most ML problems, at-
tributes that describe examples are highly task-specific, which reduces chances of finding
their analogs in another learning task.

Inspired by these limitations, in this paper we exploit the paradigm of genetic pro-
gramming (GP, [7]) as a vehicle for knowledge reuse. GP offers an excellent platform
for knowledge transfer due to symbolic representation of solutions and the ability of
abstraction from a specific context. Those properties, together with a built-in mecha-
nisms of knowledge propagation by inheritance, enable advanced and effective knowledge
manipulation. We demonstrate that a relatively simple mechanism of knowledge reuse
introduced between related visual learning tasks improves dramatically the convergence
of the learning process and, in consequence, prevents overfitting.

2 Related Work

Though knowledge reuse is definitely an important issue in computational intelligence, it
has so far attracted relatively little attention. Reported research concerns mostly knowl-
edge reuse within a single learning task, with the exception of limited work on multitask
learning [1], which predominantly uses neural nets for knowledge representation. In the
context of GP, knowledge reuse is often connected with knowledge encapsulation [6, 2, 4],
which is however not used in the approach presented here. Among the reported contri-
butions, the work done by Louis et al. most resembles our contribution [11, 10]. In
particular, in Case Injected Genetic Algorithms (CIGAR) described in [10], the experi-
ence of the system is stored in a form of solutions to problems solved earlier (‘cases’).
When confronted with a new problem, CIGAR evolves a new population of individu-
als and injects it periodically with such remembered cases. Experiments demonstrated
CIGAR’s superiority to standard GA in terms of search convergence. However, CIGAR
injects complete solutions only and does not involve GP.

The work presented here is also partially related to visual learning. As image inter-
pretation is an inherently complex task, it is difficult to devise a learning method that
solves such a task as a whole. Rather than that, most methods proposed so far intro-
duce learning or adaptation only at a particular stage of image processing and analysis,
which enables easy interfacing with the remaining components of the recognition system.
For instance, a machine learning classifier learning from predefined image features is a
typical example of such an approach. In this paper, we propose a learning method that
spans the entire processing chain, from the input image to the final decision making,
and produces a complete recognition system. Former research on such systems is rather
scant [14, 9, 3].

3 Generative Visual Learning

The proposed method uses evolutionary algorithm that maintains a population of visual
learners (solutions) implemented as GP individuals. Each learner performs generative
learning, aiming at reproducing (re-generating) the input image, and is rewarded ac-
cording to the quality of that reproduction. This process is technically implemented by
allowing the learner to perform some elementary drawing actions (DAs for short) on a
virtual canvas spanned over the input image. In this paper in particular, individuals
learn to recognize shapes of characters, and the DAs boil down to drawing of sections.

The approach abstracts from raster data and relies only on selected salient features
in the input image s. For each locally detected feature, we build an independent visual
primitive (VP for short). The complete set of VPs derived from s is denoted in the
following by P. As in this paper we focus on shape, we use VPs representing prominent
local luminance gradients derived from s using a straightforward procedure. Each VP is
described by three scalars called hereafter attributes; these include two spatial coordinates
of the edge fragment and the local gradient orientation. Details on VP extraction may
be found in [5, 15].

Technically, each visual learner L is a procedure written in a form of a tree, with nodes
representing elementary operators that process sets of VPs. The terminal nodes (named
Input) fetch the set of primitives P derived from the input image s, and the consecutive
internal nodes process the primitives, all the way up to the root node. The non-terminal
GP operators may be divided into the following categories: scalar operators (implement
basic arithmetics as in symbolic regression; see [8]), selectors (filter VPs according to
some objectives or condition), iterators (process VPs one by one), and grouping oper-
ators (group primitives into subsets according to some objectives or conditions). We
use strongly-typed GP (cf. [8]), which implies that two operators may be connected to
each other only if their input/output types match. The complete list of operators and
specification of GP types may be found in [5, 15].

Given an input image s, an individual-learner L builds a hierarchy of VP sets derived
from it. Each application of selector, iterator, or grouping operator creates and returns
a new set of VPs that includes other elements of the hierarchy. In the end, individual’s
root node returns a nested VP hierarchy built atop of P, which reflects the processing
performed by L for s. However, fitness calculation is based on a side-effect of that
computation, i.e., on the similarity of s and the canvas ¢ resulting from DAs performed
during tree processing. Technically, we implement DA as an extra GP operator called
Draw, which draws sections connecting each pair of VPs from the set of VPs given as
its argument. As to fitness calculation, we assume that the difference between ¢ and s
is proportional to the minimal total cost of bijective assignment of lit pixels of ¢ to lit
pixels of s. The total cost is a sum of costs for each pixel assignment, computed by a
greedy heuristics. When the distance d between pixels is less than 5, the cost is 0; if
d > 15, the cost is maximal and equals 1, and for 5 < d < 15 the cost is a linear function
of d. For pixels that cannot be assigned (e.g., because there are more lit pixels in ¢ than
in s), an additional penalty of value 1 is added to the total cost. The (minimized) fitness
of L is defined as the total cost of the assignment normalized by the number of lit pixels
in s € S, averaged over the entire training set of images S. An ideal learner perfectly
restores shapes in all training images and its fitness amounts to 0.

4 Knowledge Reuse

When applying our approach to a k-class classification problem, we run in parallel k
independent evolutionary processes for n generations. Each evolutionary process uses
representation of individuals and fitness function described in Section 3 and is devoted
to one decision class. The best representatives obtained from particular runs form a
complete multi-class classifier (recognition system), which is then ready to classify new
examples using a straightforward voting procedure detailed in Section 5. This basic
approach will be in the following denoted shortly as ‘GP’.

‘uab w

AENXYZ

‘uab w-u

primary l
secondary ‘ =
l Figure 2: (a) selected training examples
and (b) visual primitives derived from
Figure 1: The architecture of GPKR and them.
GPKRT.

In the basic approach, each class may be learnt in isolation, making possible processing
of multiple classes in parallel. Thus, adding a new class to the already learnt problem
is straightforward and does not require re-training of the already evolved recognizers.
On the other hand, given the similar nature of particular elementary learning tasks, we
expect them to share some domain knowledge. Thus, it seems natural to hypothesize
that enabling some knowledge reuse between the elementary learning processes would be
profitable for convergence of evolutionary processes and/or for the performance of the
resulting recognition system.

To verify this possibility, we come up with the following architecture for cross-class
knowledge reuse, denoted by ‘GPKR’ in the following. For the initial m generations
(m < m), evolutionary runs (called hereafter primary runs) proceed exactly in the same
way as in GP. As the run devoted to i** decision class (i = 1...k) reaches the m!"
generation, we store its population in a pool P;, so that P; constitutes a snapshot of i*"
evolutionary run at m'" generation. Next, the population is re-initialized (in the same
way as the initial population of the primary run), and the evolution continues for the
remaining n — m generations, referred to as the secondary run.

In the secondary run, we activate an extra crossbreeding operator, which is intended
to import some genetic material from the pools P;. This operator works similarly to the
crossover operator, but it interbreeds individuals from the current population of the it"
secondary run (‘natives’) with the individuals from one of the pools P; j # i (‘aliens’).
First, it selects a native parent from the current population using the same selection
procedure as crossover. Next, it selects an alien parent by randomly choosing one of the
pools Pj, j # 4, and then randomly selecting an individual from P;, where this choice is
not influenced by individual’s fitness. Then, two nodes N,, and N, are randomly selected
in the native and alien parent, respectively, and the subtree rooted in N,, in the native
parent is replaced by the subtree rooted in N,. The modified native parent is treated as
offspring and injected into the subsequent population.

We have also considered a slightly different version of GPKR, named GPKR™. In this
variant of our approach, we drop the constraint j # i, i.e., we allow for crossbreeding of
natives with individuals from the primary run of the same decision class.

Figure 1 shows the architecture of the GPKR approach. The only difference between
GPKR™ and GPKR is reflected by the presence of an extra dashed arrow connecting
the primary and secondary runs of the same class. Both GP and GPKR use the same

parameter settings and require k evolutionary runs lasting n generations each. Thus, if
we ignore the negligible time needed for population re-initialization, the time complexity
of GPKR is the same as that of GP on the average. Note also, that, as the pools P;s are
fixed, the runs devoted to particular classes do not have to work literally in parallel, but
may be carried out sequentially.

5 The Experiment

The purpose of the experiment is to compare GPKR, the method with knowledge reuse,
to the basic method (GP) on a real-world task of handwritten character recognition.
Using a TabletPC computer we prepared a training set containing 72 images (examples,
objects) of six (k = 6) upper-case characters: A, E;, W, X, Y, and Z, each character class
represented by 12 examples written by 3 persons. Figure 2 illustrates selected training
examples and the primitives obtained from them. Each short segment depicts a single
VP, with its spatial coordinates located in the middle of the segment and the orientation
depicted by slant.

We use generational evolutionary algorithm maintaining a population of 25,000 GP
individuals for n = 400 generations. The initial population is created using Koza’s
ramped half-and-half operator with ramp from 2 to 6 [8]. We apply tournament selec-
tion of size 5, using individuals’ sizes (number of tree nodes) for tie breaking and thus
promoting smaller GP trees and alleviating the problem of code bloat. For GP runs,
offspring are created by crossing over selected parent solutions from previous generation
(with probability 0.8), or mutating selected solutions (with probability 0.2). For GPKR
runs, crossover probability stays the same, while mutation probability is lowered to 0.17
to yield 0.03 to the crossbreeding operator (see Section 4). The GP tree depth limit is
set to 10. Except for the fitness function implemented for efficiency in C++, the algo-
rithm has been implemented in Java with help of the ECJ package [12]. For evolutionary
parameters not mentioned here, ECJ’s defaults have been used.

To intensify the search for both GP and GPKR runs, we split the population into 10
islands and exchange some individuals between them every 20" generation starting from
the 50" generation. In that exchange, each odd-numbered island donates 10% of its well-
performing individuals (selected by tournament of size 5) to five even-numbered islands,
where the donated individuals replace the ‘worst’ individuals selected using an inverse
tournament of the same size. The even-numbered islands donate their representatives
to the odd-numbered islands in the same way. The islands should not be confused with
the boxes depicting evolutionary runs in Fig. 1 — the island model described here is
implemented within each evolutionary process independently.

Synthesis of each recognition system involves running k = 6 evolutionary processes,
each of them using training examples from one character class for fitness computation,
and producing one best-of-run individual. The ensemble of all 6 best-of-run individuals
constitute the complete recognition system, which undergoes evaluation on the test set
of characters, which is a separate collection of 6 x 68 = 408 characters and includes
also characters written by other people than for the training set. A recognition system
classifies an example ¢ by computing fitnesses (responses) of all six individuals for ¢
and indicating the class associated with the fittest individual. This entire procedure of
evolutionary training and testing is repeated 33 times to obtain statistically conclusive
results. In each of 33 trials, we evolve one GP recognition system (control experiment

0.24 + 0.24 + 0.24 +

0.22 0.22 0.22

0.20 0.20 0.20

fitness
fitness
fitness

0.18 - 018 - 0.18 -

0.6 {— GP 016 {— GP 0.16 {— GP
rrrrr GPKR-50 - GPKR-50 - GPKR-50
-- GPKR-100 --- GPKR-100 R --- GPKR-100
- GPKR-200 -- GPKR-200 - GPKR-200
0.14 GPKR-300 0.14 GPKR-300 - 0.14 - GPKR-300
T T T T T T T T T T T T T T T
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400

0.24 + 0.24 + 0.24 +

0.22 0.22 0.22

0.20 0.20 0.20

fitness
fitness
fitness

0.18 4 0.18 4 0.18 +

016 41— GP 016 — GP 0.16 {— P

rrrrr GPKR-50 - GPKR-50 -~ GPKR-50
-~ GPKR-100 -~ GPKR-100 -~ GPKR-100
- GPKR-200 - GPKR-200 - GPKR-200
0.14 GPKR-300 0.14 4 GPKR-300 014 GPKR-300
T T T T T T T T T T T T T T T
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
generation generation generation

Figure 3: Mean fitness graphs.

without knowledge reuse), and four independent GPKR-m recognition systems that vary
in the generation number m where transition between primary and secondary run takes
place m € {50,100,200,300}. We also evolved GPKR™-m recognition systems, but
the results of GPKR turned out to be slightly better, thus we skip GPKRT-m in the
following.

In Fig. 3, we show the fitness graphs of the best-of-generation individuals averaged
over all 33 evolutionary runs. For GPKR, only secondary runs are shown, as the primary
run of GPKR is equivalent to GP stopped after m generations. Despite the reduced
number of available generations, the secondary runs of GPKR converge to solutions
that are not worse than GP, quite independently of the primary run length m, though
GPKR-100 and GPKR-200 seem to perform best. For characters A, E, and W, GPKR
ends up with significantly better fitness values; for task E, the improvement amounts
to approximately a quarter of the GP fitness. On the other hand, the lack of difference
between GP and GPKR for character class Z, together with the relatively quick GP’s
convergence suggest that GPKR cannot help much if the task is easy enough to be solved
without knowledge reuse.

Table 1 shows the test-set fitness values of the evolved best-of-run individuals averaged
over 33 evolutionary runs. Values printed in bold indicate GPKR’s superiority to GP
with respect to the paired two-sided ¢-Student test at 0.05 significance level. Again,
statistically, GPKR never performs worse than GP; quite on the contrary, it is superior

Table 1: Test set fitness of the best-of-run individuals averaged over 33 evolutionary
runs.

Class GP GPKR-50 GPKR-100 GPKR-200 GPKR-300

A 0.415 0.450 0.394 0.360 0.389
E 0.462 0.369 0.328 0.325 0.318
W 0.322 0.297 0.318 0.299 0.304
X 0.444 0.360 0.354 0.329 0.328
Y 0.381 0.390 0.386 0.392 0.375
Z 0.283 0.302 0.271 0.281 0.285

Table 2: Average TP rates and FP rates of the recognition systems on the test set.

Class TP rate FP rate
GP GPKR GP GPKR
50 100 200 300 50 100 200 300
A 0.952 0.943 0.934 0.957 0.936 0.003 0.003 0.003 0.002 0.001
E 0.910 0.931 0.959 0.965 0.968 0.017 0.019 0.017 0.011 0.011
w 0.994 0.999 0.990 0.997 0.999 0.011 0.012 0.014 0.012 0.015
X 0.815 0.918 0.915 0.934 0.926 0.015 0.022 0.025 0.027 0.027
Y 0.894 0.853 0.847 0.830 0.848 0.032 0.012 0.015 0.013 0.014
VA 0.953 0.914 0.939 0.947 0.939 0.018 0.020 0.010 0.010 0.010

Figure 4: Visualization of the process of shape restoration.

to GP in 9 out of 24 cases, which clearly suggests that GPKR prevents overfitting.

Table 2 presents the average true positive (TP) and false positive (FP) of complete
recognition systems on the test set. The results confirm earlier observations: for instance,
in terms of TP, GPKR-200 outperforms GP on decision classes A, E, W, and X. In terms
of FP, the comparison outcome varies depending on decision class, but in general all
GPKR systems perform better than GP, attaining accuracy of classification from 92.65%
(GPKR-50) to 93.82% (GPKR-200), versus 91.96% for GP.

In Fig. 4, we illustrate the process of generative shape restoration performed by the
well-performing individuals for selected character classes. Thin dotted lines mark the
shapes drawn by a human, whereas thick continuous lines depict drawing actions per-
formed by the individual (sections). In most cases, the evolved individuals successfully
reproduce the overall shape of the recognized object, despite various forms of imperfect-
ness of the hand-drawn characters.

6 Conclusions

We demonstrated the possibility of obtaining substantial performance increments by
introducing knowledge reuse in a variant of genetic programing designed to process vi-
sual information and recognize objects. The proposed mechanism of knowledge reuse is
straightforward and may be implemented by a relatively simple extension of the canonical

scheme of evolutionary algorithm and introduction of an off-shelf GP crossover operator
for crossbreeding. The method does not increase the computational effort of the learn-
ing process, and provides statistically significant performance improvement at the same
computational expense as the basic method.

Bibliography

[1]
2]

EORCEERES |

Rich Caruana. Multitask learning. Mach. Learn., 28(1):41-75, 1997.

Edgar Galvan Lopez, Riccardo Poli, and Carlos A. Coello Coello. Reusing code in
genetic programming. In Maarten Keijzer et al., editor, Genetic Programming 7th
European Conference, Proceedings, volume 3003 of LNCS, pages 359-368, 2004.

Daniel Howard, Simon C. Roberts, and Conor Ryan. Pragmatic genetic program-
ming strategy for the problem of vehicle detection in airborne reconnaissance. Pat-
tern Recognition Letters, 27(11):1275-1288, 2006.

William H. Hsu, Scott J. Harmon, Edwin Rodriguez, and Christopher Zhong. Empir-
ical comparison of incremental reuse strategies in genetic programming for keep-away
soccer. In Maarten Keijzer, editor, Late Breaking Papers at the 2004 Genetic and
Evolutionary Computation Conference, Seattle, Washington, USA, 26 July 2004.
Wojciech Jagkowski. Genetic programming with cross-task knowledge sharing for
learning of visual concepts. Master’s thesis, Poznan University of Technology, Poz-
nan, Poland, 2006.

John R. Koza, Forrest H Bennett III, David Andre, and Martin A Keane. Reuse,
parameterized reuse, and hierarchical reuse of substructures in evolving electrical
circuits using genetic programming. In Tetsuya Higuchi et al, editor, Proceedings of
International Conference on Evolvable Systems: From Biology to Hardware (ICES-
96), volume 1259 of LNCS, Tsukuba, Japan, 1996.

J.R. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.
J.R. Koza. Genetic programming — 2. MIT Press, Cambridge, MA, 1994.

Krzysztof Krawiec and Bir Bhanu. Visual learning by coevolutionary feature syn-
thesis. IFEEE Trans. on System, Man, and Cybernetics — Part B, 35(3):409-425,
2005.

SJ Louis and J. McDonnell. Learning with case-injected genetic algorithms. Fvolu-
tionary Computation, IEEE Transactions on, 8(4):316-328, 2004.

Sushil J. Louis. Genetic learning from experience. In Proceedings of the International
Congress on Evolutionary Computation, Canberra, Australia, 2003. IEEE Press.

S. Luke. ECJ evolutionary computation system, 2002. (http://cs.gmu.edu/
eclab/projects/ecj/).

T. M. Mitchell. The discipline of machine learning. Technical Report CMU-ML-06-
108, Machine Learning Department, Carnegie Mellon University, July 2006.

M. Rizki, M. Zmuda, and L. Tamburino. Evolving pattern recognition systems.
IEEE Transactions on Evolutionary Computation, 6:594-609, 2002.

Bartosz Wieloch. Genetic programming with knowledge modularization for learn-

ing of visual concepts. Master’s thesis, Poznan University of Technology, Poznan,
Poland, 2006.

