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Abstract. This paper presents two-phase hybrid evolutionary algorithm (EA) to optimize 
Single Source Capacitated Warehouse Location Problem (SSCWLP); a well-known 
location-allocation problem employed for the telecommunication network design 
modeling. The first phase of the algorithm aims the search to satisfy the problem 
constraints and during the second phase actual optimization take place. To improve the 
performance of EA the algorithm is combined with other local search heuristics. Influence 
of EA hybridization as well as different selection schemes dealing with constraint handling 
are discussed. In addition, performance of co-evolutionary algorithm (co-EA) versus the 
EA with single population is compared across a set of example problems. 

1 Introduction 

The global telecommunications network is probably the largest and the most complicated 
structure devised by man. Correct planning and optimization of such network requires 
consideration of many complex factors like number, type, and distribution of the network 
elements over the geographical area as well as assignment between deployed network 
components. Moreover difficulty of producing cost-effective solutions increases with network 
size and complexity. So that, right design of telecommunications network infrastructure becomes 
very difficult and simultaneously very important task for the planner.  

Modern telecommunication networks have a hierarchical structure and usually involve 
different design approaches. To tackle various network design issues number of location 
problems have been developed over the years, which can be then used within different phases of 
the network planning process. The aim of this paper is to present new hybrid evolutionary 
algorithm to the SSCWLP as a crucial location problem used during the telecommunication 
network design. 

SSCWLP as most of the location problems relevant to the network optimization tasks can be 
classified as NP-complete. Exact and heuristic algorithms have been proposed to solve the 
problem [3, 9, 11]. Existing studies of the EA for the SSCWLP problem usually seeks for a 
specialized evolutionary operators and repair algorithms to deal with infeasible solutions. 
Approach proposed in this paper for simultaneous constraint handling and problem optimization, 
is the usage of two-phase hybrid evolutionary algorithm. Further solution improvement is 
achieved through co-evolutionary extension of the EA. 

1.1 Basic Location Models in Telecommunication 
Basic location models being relevant to the design of telecommunication networks can be 
roughly classified into number of different classes. These can be for instance uncapacitated and 



capacitated location models dealing with the nodes capacity constraints or dynamic models that 
consider the expansion of the telecommunication network over specific period of time [6].  

Given this diversity of the network design models one can see that accurate planning and 
optimization of the today’s modern networks involves application of various kinds of location 
problems. Capacitated location models engage special attention when dealing with 
telecommunication network design [8]. They are developed to decide about the deployment of 
concentrators and the assignment of end terminals without violating the capacity constraints of 
the concentrators. The capacity constraints may relate to the number of the terminals (inferior 
nodes) connected to the concentrator or might express terminal demands with subject to the 
consumed network resources (sort of commodity demands). 

The paper presents the evolutionary approach for the solution of Single Source Capacitated 
Warehouse Location Problem (SSCWLP) with capacity constraints at node facilities. 

1.2  Capacitated Warehouse Location Problem Statement 
Warehouse Location Problems (WLP) belongs to the major class of location problem and a 
SSCWLP is a version of WLP involving single facility source for each customer with single 
commodity demands, limited warehouse capacity and single echelon [6, 8, 12]. 

Let’s consider the problem of serving the given set of customers from the different 
warehouses. Assume that the set I = {1,.., m} depicts of candidate sites we can locate warehouses 
and the set J = {1,.., n} of customers needed supplier. Each warehouse i ∈ I has his fixed cost fi 
and constraint capacity si.. Each customer has a demand bj, and cij is a cost of allocating all of the 
demand of customer j to warehouse i. The objective we want to reach is to find a subset of 
warehouses and to fully assign each customer to one of the chosen warehouse location in such a 
way that the sum of fixed costs of establishing warehouses and related transportation costs to 
supply the customer demand are minimized whilst the warehouse capacities are not exceeded. 
The problem is stated as follow: 
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and: 
fi  – cost of building a warehouse at i; cji  – cost of supplying customer j from warehouse i 
bj  – denotes demands of j –th customer; si  – denotes warehouse capacity at location i 
 

if customer j is supplied from warehouse i 
otherwise

if warehouse is established at i 
otherwise



Constraint (2) ensures, that each client must be assigned to the single warehouse. Constraints (3) 
enforce the total demand of customers assigned to a facility not to exceed its maximum capacity. 
Constraint (4) ensures, that a client can only be assigned to an open warehouse. Two last 
constraints  (5) and (6) represents the integrality requirements.  

2 The Evolutionary Algorithm Approach – Two Phase Algorithm 

This section deals with the implementation details of proposed two-phase hybrid evolutionary 
algorithm. The framework of the algorithm bases on the generic constrained optimization 
algorithm suggested in [13]. 

In the first phase of the algorithm the objective function is completely disregarded and the 
constrained warehouse location problem is treated as a constraint satisfaction problem. In the 
second phase the constraint satisfaction problem and optimization of the CWLP objective 
function are minimized simultaneous using bi-objective evolutionary algorithm.  

Two selection schemes are incorporated into the second phase of the algorithm: the 
preference schemes and non-dominated schemes. For more information about constraint handling 
techniques reader is encourages to see papers [7,10,14]. 

The algorithm switches from phase one to the second phase after when at least single feasible 
solution is found. The pseudo-code of the proposed algorithm for solving SSCWLP is given by 
following: 
 
Population initiation – customer based representation (see chapter 2.4) 
     if (number of feasible solution =0) 
 //PHASE1 

Goal: Minimize v(X) – constraints satisfaction problem 
Elite solution  => solution with least v(X) 
r(X) => rank-based individual fitness assignment based on violation v(X) 
Fitness function => ValFit1(X)=r(x) 
Tournament selection 
Apply genetic operators on population 

     else 
//PHASE2   
f(X) – SSCWLP objective function  
Goal: Minimize (f(X),v(X)) – bi-criteria optimization 
Elite solution => feasible solution with least f(X) 
r(X) => rank based reproduction; two selection schemes 
d(X) => crowding distance operator; applied for the selection process (tournament) 
Fitness function => ValFit2 = r(X) 
Apply genetic operators on population 
Hybridization using local search heuristics 

     end 
generation=generation+1 
end 

Figure 1. Pseudocode of the proposed algorithm for WLP. 



2.1 Constraints Satisfaction Problem 
The goal of this phase is to find feasible solution from a random initialization. 

Scalar objective function. The objective function calculation is done similarly to the penalty 
function when dealing with constrained optimization. From the formulation of SSCWLP we have 
i inequality constraints gi(X)<=0 (i=1…m), where set I = (1,...,m) defines warehouse locations,  
(compare  constraint (3)). Constraint violation of individual X on the i-th constraint is calculated 
by: 
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characterizes degree of the constraint violation on the i-th facility. 

The normalized scalar constraint violation function (9) takes values in the range (0,1). 
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where: 
cmax – denotes maximum violation of constraint i. 

2.2 Bi-Objective Optimization – Constraint Optimization Problem 
The goal of this phase is a global search of the optimum solution to the SSCWLP. In this phase 
the actual optimization take place. Objective functions (1) and (9) are minimized simultaneously 
using bi-objective EA. 

Fitness function schemes. A major issue in solving the constraint optimization problem is the 
balance between selective pressure introduced by the selection schemes and to maintenance the 
population diversity. Thus two selection schemes are implemented to guide the search process, 
both based on the ranking selection: the preference schemes and non-dominated schemes [13].   
The preference scheme is defined by the following: 

– any feasible solution is better then any infeasible solution; 
– among two feasible solutions i and j, assign greater probability of selection to the 

solution with the better objective function; 

Regardless of the solution feasibility in case of individuals with the same objective value they 
receive the same rank.  

The preference scheme is then compared with the non-dominated scheme where all solutions 
are ranked on base of the non-domination of their constraint violation and objective function 
values. All individuals are ranked on base of the Pareto-front they belong, according to [5]. 



When converging to the Pareto-optimal set of solutions it is desirable that the obtained set of 
solutions is spread equally over the Pareto-front. The diversity among non-dominated solutions is 
introduced by using the crowding comparison procedure [4]. The crowding distance estimates 
density of a neighborhood of a specific solution in the population and is used to guide tournament 
selection. Both algorithm phases use power rank-based fitness assignment adopted from [1]. 

Local search (LS) algorithm. A common approach to improve the performance of EA is to 
combine them with other search heuristics. They examine the effects of little local changes and 
accept only moves, which lead towards better solutions. The true advantage of the local search 
method is that this method does not need to be precise. Since only few steps of a local search 
algorithm may accelerate the convergence to the optimum [2]. 

Number of local search strategies can be devised for the SSCWLP.  Examples of possible 
search methods are:  

– change the customer assignment to another randomly chosen open site; accept all 
changes that improve solution simultaneously passing over all capacity constraints;  

– for each customer change randomly site assignment; accept change only when beneficial 
and do not break capacity constraints;  

– among open sites for each customer find the most beneficial feasible solution. 

2.3 Co-Evolutionary Approach 
In addition, to extend constrain handling scheme co-evolutionary approach is proposed 
alternatively to already described evolutionary algorithm. With this modification for the second 
phase instead of single population the algorithm processes number of subpopulation. This means 
that the global genetic operators will influence on each sub-population locally i.e. subpopulations 
will evolve independently exchanging the genetic information sporadically between each other 
[1]. Co-evaluating sub-populations use for phase 2 algorithm as proposed on Figure 1 and each 
employ unique local search operator (examples of LS strategies are described in previous 
subchapter). Since proposed local search methods differ is a way they treat SSCWLP constraints 
suggested modification of co-evolution shall increase diversity over the whole set of solutions 
improving balance between exploration and exploitation. 

2.4 Evolutionary Algorithm Parameters 
Described two-phase constrain handling evolutionary algorithm is applied to 12 test data derived 
from scientific database of OR Library and belong to standard test case scenarios for problems of 
WLP class. 

For the SSCWLP encoding customer-based representation is used where each chromosome is 
a n-dimensional vector of integers in the set {1,m}: the integer value of the j-th position indicates 
the warehouse where the customer j is assigned. Used encoding always guarantee satisfaction of 
assignment constraints (2) and (4), see subchapter 1.2. Given representation allows manipulation 
of the genome using standard genetic operators such as uniform crossover and uniform mutation. 
The crossover probability was setup to pc=0.7 and mutation ratio pm=0.01.  

The algorithm was realized in MATLAB environment. In the conducted experiments the 
fixed number of 240 individuals for EA and three subpopulations with 80 individuals each for 
co-evolutionary approach was chosen. For each phase elite number is setup to 1.  There were no 



attempts to optimize genetic parameters i.e. crossover probability pc, elite number and population 
size.  

3 Results 

To test proposed algorithm number of experiments was conducted using set of well-known test 
data from OR Beasley Library.  

At first two proposed fitness assignment schemes are discussed. To evaluate both schemes  
Figure 2 plots the minimum, maximum, and mean fitness function values received for one of the 
SSCWLP problem versus generations. As observed from Figure 2 plot (a), higher spread 
between individuals is experienced for non-dominated scheme. Simultaneously when comparing 
the convergence to the global optimum across the set of test problems the non-dominated scheme 
slightly outperforms the preference scheme. This could be caused by the specificity of SSCWLP 
problem, where we should expect higher number of disconnected feasible solution. Therefore 
giving higher selection probability to infeasible individuals we help algorithm to explore more. 

 

 
Figure 2. Best, worst and mean fitness function values versus generations using (a) nondominated scheme 

and (b) preference scheme.  

Next figure presents the influence of incorporated local search strategies on the algorithm 
convergence to global optimum. Well-known approaches of LS method applications i.e. Boldwin 
and Lamarkian evolutions are compared against algorithm without LS method incorporated. As 
can be clearly seen the hybridization of EA speed up considerably the convergence to the global 
optimum increasing simultaneously the algorithm performance. Besides Lamarkian approach 
enables to explore the search space more efficiently comparing to Baldwin algorithm. For further 
tests local search operator is applied separately to each individual after genetic operators using 
Lamarkian approach. 



 
Figure 3. Best individual across generations for algorithm w/o local search with local search using 

Lamarkian and Boldwin approaches. 

In the Table 1 the results acquired by two-phase hybrid EA on test data problems are 
presented. For every problem the algorithm was run 10 times limiting number of iterations to 
500. The first column in the table identifies the test problem and their size (no of customers, no 
of sites) and the next present known optimum value. Further columns collect the performance 
indicators for 10 activations of algorithm. These are: the minimal obtained solution and number 
of solutions that reach global optimum, limit of 2% convergence and limit of 4 % convergence to 
the global optimum. In addition the performance of co-evolutionary algorithm for the same sort 
of test data is incorporated into table for comparison with traditional EA. 

Table 1. The algorithm comparison: evolutionary algorithms vs. co-evolutionary approach. 

10 runs of EA 10 runs of Co-EA Problem 
(Size) 

Optimum 
value Best Opt. <2% <4% Best Opt. <2% <4% 

(25,50) 
Cap91 
Cap92 
Cap93 
Cap94 

 
796648 
855733 
896617 
946051 

 
796648 
858110 
905170 
957190 

 
7 
0 
0 
0 

 
3 

10 
10 
9 

 
0 
0 
0 
1 

 
796648 
858110 
900760 
952430 

 
5 
0 
0 
0 

 
5 
10 
9 
8 

 
0 
0 
1 
2 

(50,50) 
Cap121 
Cap122 
Cap123 
Cap124 

 
793439 
852524 
895302 
946051 

 
794810 
854900 
898870 
953040 

 
0 
0 
0 
0 

 
10 
10 
10 
6 

 
0 
0 
0 
4 

 
794300 
854900 
899180 
951250 

 
0 
0 
0 
0 

 
10 
10 
10 
10 

 
0 
0 
0 
0 

 



Test problems cap61 to cap63 for SSCWLP are omitted in the table because both EA and co-EA 
reach global optimum for each algorithm run. Analyzing the achievements of EA and co-EA no 
apparent discrepancy between the results can be noticed. Nevertheless it seems that co-EA 
manages better solution space. When compare more attentively it is seen that co-EA converges 
more closer to the known global optimum nearly for all test problems. Additionally for the 
largest test data for each run it reaches the borderline of 2% convergence to the optimum. This 
may be caused by improved population diversity naturally introduced by co-evaluating 
subpopulation as shown on Figure 4.  

 
Figure 4. Average distance between individuals of EA and co-EA versus generations.  

Figure 4 presents population diversity plotted versus generations using average distance measure 
between all individuals in the population. As showed using red markers ‘*’ on the plot the 
proposed co-EA maintenance higher population diversity and as learned from the Table 1 is able 
simultaneously converges better to the optimum. Further increase of population diversity is 
expected from the usage of different local search strategies within each population. It should be 
also underlined that the processing time for both algorithms remains at the same level – since 
roughly speaking co-EA introduces only one additional step connected with migration between 
subpopulations.  

4 Conclusion 

Two-phase hybrid evolutionary algorithm was implemented to solve SSCWLP. To deal with 
constraints optimization on warehouse capacities methods based on the penalty function and 
multi-objective optimization were developed for a specific algorithm phases. The goal of the first 
phase is to find feasible solutions and within the second phase of the algorithm bi-objective 
optimization of SSCWLP problem starts.  



The major issue in optimizing the constrained location problem is to maintain balance 
between exploitation and exploration. This is done by non-dominated rank-based fitness 
assignment and elitist introduction. Comparing to preference scheme it appears that EA with 
non-dominated scheme perform better. This specific fitness assignment scheme increases 
selection of individuals with some degree of infeasibility thus improving exploration of the 
search space. Also the notable improvement of the algorithm is achieved after applying local 
search operator with Lamarkian approach. As expected local search heuristic intensify the 
exploitation of the local minimum area attraction. Although application of additional local 
operators means longer time of processing nevertheless this can be recompensed by faster 
convergence. Further diversity preservation is obtained using co-evolutionary approach. Co-
evoluting subpopulations implement various local search strategies within subpopulations. Along 
with Lamarkian evolution co-evolutionary algorithm enables to explore the search space more 
efficiently through smooth displacement of solutions into different parts of the search space. Co-
EA converges more closely to the known global optimum nearly for all test problems 

For tested problems proposed hybrid EA and co-EA extension was able to find optimum 
solutions or solutions close to the optimum. 
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