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Abstract. In the paper it is presented the analysis of results and dynamics
of evolutionary optimization applied to the well known magnetic Ising model.
The data were obtained using different models and genetic operators and allow
to formulate some more general conclusion concerning the possibilities of solving
real NP-hard problems propted by physics.

1 Introduction

The physics of magnetism seem to be one of the most extensively studied branches of solid
state/material science. This is especially caused by the wealthy of problems concerning
the magnetic effects connected to the widely spread applications. Among the topics one
can find those with the characteristic size changing by many order of magnitude, from
single atom magnetism, through microscopic domains, up to macroscopic samples. Also
the number of theoretical and, following them, calculational approaches is vast, matching
the scale, complexity and objectives of issue. At the atomic level still the most fruitful
attempts are those one pursuing the one proposed by Ising a century ago (as well as its
basic level modifications, like Heisenberg or Potts models). Because some main features
of it has been shown in earlier works [5] here only the short sketch will be presented.

In the classical Ising-like model we have the set of spins lying in the well defined
positions of some structure. One has to point it out that there is no real limitations on
the structure considered as well as on the set of possible spin values. The Ising model has
been eg. used to calculate properties of such a structure, like, reflecting the small-world
properties, Barabasi-Albert network. In the classical attempt the spin set consists two
possible states {41, —1} what has been later changed, in order to preserve compatibility
with general description to {4+1/2,—1/2}. In such a general view the values of so called
z-component of spin vector may vary from minus to plus spin modulus differing by 1 and
spin modulus 1 will lead to three state case: {+1,0,—1}. The interaction between spins
is described by the simple formula giving the total energy of the system:

H=-J> 88-h>_ S (1)
i i

Certainly this model is not adequate for real materials and for the case of them a
lot of different additional terms depending on particular atom character may be added.
This is however sufficient for performing some tests enabling the comparison of different



evolutionary operator’s influence on the efficiency of calculation understood as a time
needed t obtain the best result. We should also remark that an attempt to perform some
more systematic calculations for basic model were strongly influenced by difficulties with
solving much harder problem like ternary alloys [5, 7].

2 Some existing approaches

Magnetic models based on the Ising attempt are used not only in pure magnetism but they
work also as a benchmark for different types of study like sociophysics, phase transition
study and percolation or some basic models of cellular automata evolution. They are also
the test areas for various calculational procedures especially those one which are based
on discrete configurational space. Therefore one can look at them from two points of
view. One of them is strictly physical: we are just looking for the best solution of physical
problem described by the interaction similar to those presented in equation 1. The second
one is the attempt to use well defined system to test some computational procedures and
their features. The connection between Ising-like system and the Evolutionary Algorithm
is apparent as one considers the system analysis to be the optimization problem.

Concerning the physical interest one can divide the areas of use into few groups.

Ground state calculations In this group we will name the calculations devoted to
study the problem as it is defined by the equation 1. Actually we can list here only the
basic work of Anderson [1] where the twodimensional Ising model was solved for the first
time for the ferromagnetic coupling and the attempts presented earlier at the KAEIOG
conferences [5, 7]. These topics, concerning the of complex structures optimization, are
indeed the most promising direction of ground state study.

Thermodynamical calculations We can also regard the calculation of system pro-
perties in the given temperature as the optimization problem. The minimization concerns
here not the total energy but the Gibbs free energy, see formula 2. The main problem is
here the way to calculate the entropy of system S. In further part of this paper we will
spend a little more time on this problem. When talking about such problems one has to
list few papers devoted to study 2D Ising model [10, 6].

Spin glasses Although the calculation for spin glasses generally belong Spin glasses
Although the calculation for spin glasses generally belong to the first group because they
deal with the problem of ground state searching, due to the character of sample we
decided to extract it and present as a separate group. In the spin glasses the exchange
constants J are sampled from the initially assumed distribution. The primary attempt
was presented by Sutton et al. [14] but the most important step was Hartmann’s cluster-
exact approximation [8, 9]. Quite recently this method was in detail studied by Blum
and coworkers [3].

3 Model

In this paper we deal with the classical two-dimensional Ising model, ie. two-state
({+1,—-1}) system on the square lattice of size L. The goal is to minimize Gibbs free
energy of the system and to obtain the temperature characteristics related to the ma-
gnetic phase transition. We are interested in the shape of magnetization curve, ferro-



paramagnetic transition temperature (T¢), the values of critical exponents describing the
process of reaching T point. The choice of basic Ising model was substantiated by two
major objectives. During former KAEIiOG conferences we reported the problems with
minimizing the complex system of ternary alloy [5, 7]. These problems led us to such
an effort to perform more systematic investigations on the simplified model. Although
the calculations for Ising model with the help of EA has been presented [6] we decided
to come back to it and make some tests which could answer the questions about the
dependence of efficiency on size, entropy model, optimization point (understood as a
point on the phase diagram) or, especially, evolutionary operators used. The selection of
Ising model was caused by the fact that it is well known, indeed this is the only low-level
magnetic problem solved analytically, so the results can be easily compared with the
exact solution.

Let us now summarize main features which distinguish different results across this
paper. The first one is the model of entropy. Using formula

G=U-TS (2)

(U is the internal energy calculated using hamiltonian H) we have to identify the usual,
thermodynamical meaning of entropy with the configurational one. Such an approach is
widely accepted in physics [11, 12, 13, 4, 16, 2]. In this paper two possible methods were
used. The Bukman’s pair approximation [4] follows the reduction of cumulant series to
the first two terms and uses the single-site and pair densities (p1, p2) to calculate entropy

per one site as:

o= gag —(z=1)oq, (3)

o1 and o7 are calculated from densities according to the usual Boltzmann-Gibbs formula:

o1 = —kp Zpl,i w«ln(prs), o02=—kp ZpQ,i * In(pa,;) 4)

(3

The calculations made using this model will be denoted E1.
The results of pair approximation are compared to those obtained using so called
Tsallis entropy [15], denoted E2.

1-S".p?
o = kp—=tlt ?qu (5)

The idea of entropy redefining is the effect of analysis of its nonextensivity resulting eg.
in the size effect. For simplicity we took into account only the most simple single-site
formula what makes it possible to connect it directly with magnetization. One has to
notice that Tsallis model has the parameter ¢ which choice can significantly change the
properties of studied system. On the fig.1 there is presented the comparison of analytical
magnetization curve of pure Ising model with those obtained by minimization using
mentioned entropies with different parameters.

Please, notice that we will not discuss here the physical correctness of proposed ap-
proaches. Although the pair approximation with Boltzmann-Gibbs entropy is well justi-
fied, the use of single-site Tsallis model is hardly accepted as a true physical solution. As
the best illustration we can call so called ANNNI (Axial Next Nearest Neighbour Ising)
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Figure 1. The magnetization in the Ising model.

model where the nn interaction is of ferromagnetic and the nnn - antiferromagnetic cha-
racter. The samples of this type exhibit interesting behaviour with a lot of different
possible states on the phase diagram leading to zero magnetization. It doesn’t exist eg.
the most simple ferromagnetic ordering but spins are organized in chains with the same
orientation, like < 2,2 > /< 3,3 >,< 3,2,2 > or generally < 3,2,2 >. The quantities
in braces means the numbers of successive spins with the same direction. Apart from
the model of entropy used it is obviously impossible to distinguish these states with
single-state calculation.

] | SIM1 | SIM2 [ SIM3 | S2M1 | S2M2 [ S2M3 | S3M1 | S3M2 [ S3M3 |

FE1: n | 310.5 | 304.6 | 310.5 | 304.9 | 310.5 | 297.3 | 304.9 | 316.3 | 308.5
Sn 282.5 | 276.8 | 282.5 | 267.5 | 282.5 | 275.8 | 267.5 | 319.3 | 270.7
FE2: n | 296.9 | 278.2 | 311.0 | 279.5 | 278.2 | 313.0 | 281.5 | 308.7 | 311.3
Sn 298.5 | 272.1 | 299.9 | 272.6 | 272.1 | 299.8 | 296.8 | 299.9 | 299.4
PE1l: n | 56.7 60.4 82.2 60.4 60.7 84.1 83.9 82.2 82.2
Sn 61.1 55.4 86.3 55.4 56.2 86.9 88.5 86.3 86.3

| PE2: [ 83 [ 85 | 86 | 83 | 69 | 50 | 69 | 68 | 51 |

Table 1. Results of optimization. The first row of every cell presents the average number
of generation when the minimum was reached. The lower row contains the value of standard
deviation. The exception is for the PE2 type of calculation where, due to computational hardess,
there is presented the percentage of runs which led to global optimum in 10* generations.



The second important point is the selection of temperature which corresponds to
the choice of the point on the phase diagram. We chose two temperatures in order to
cover the regions characterized by ferro- as well as paramagnetic ordering. We avoided
the selection of the most imposing 7' = 0 point because we wanted to have a nonzero
influence of entropy. Therefore the temperature 7' = 1 was chosen and these calculations
are described by F. As a paramagnetic point (P) was indeed selected the point just
before the phase transition 7" = 2.1 where the magnetization has already fallen from the
m = 1 value but wasn’t also really paramagnetic.
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Figure 2. Initial distributions of magnetization and energy for two ways of initial values setting.

Concerning the true evolutionary operators we decided to compare three most popular
selection algorithms: roulette wheel(S1), tournament with three competitors (S2) and
the rank selection(S3). Mutation was performed as spin flip performed on a random spin
from the chosen individual from the population. The mutation rate is then understood as
a percentage of individuals for which only one flip is performed. As for selection also here
three possible values were selected: 0.1((M1), 0.2((M2), 0.3((M3). Considering that the
size of population was taken to be 100 for E1 and 50 E2 at every stage of new generation
creation 10,20 or 30 (5,10,15) offsprings respectively undergoes random mutation. Only
the best individual, according to the preferred elististic model, is just copied between the
old and the new one generation and isn’t modified by genetic algorithms.

The objective function is selected typically for the energetic problems:

(6)

)= (o ).

where U,,in and Upy,q, are the lowest and the highest free energy value in population, the
selectivity parameter o was set to 1. One should also point out that no process of local
optimization was performed.
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Figure 3. The plot of average free energy dependence on the generation index, averaged over
a number of runs.

4 Results and Conclusions

The results of optimization are presented in table 1.

The efficiency of ferromagnetic ordering seems to be almost totally independent on
the optimization parameters. For pair as well as Tsallis entropy, for different types of
population update the results are versy similar, one can say the same. The average time
of reaching minimum n is always about 300 generations. What is interesting that the
standard deviation value is of the same order this number what suggests the existence of
long tails in the n distribution. The comparison which is not shown here for the lack of
place makes it possible to remark that evolutionary operators are negligible when looking
for the crucial time consuming factor. Independently of their combination the time spent
on calculations is similar and the most important factor remains the physical part of
calculations. Interesting differences appears during comparison of data for paramagnetic
region. Although for E1 if becomes more efficient, for E2 the procedure starts to diverge.
It is especially strange due to the fact that for single-site Tsallis model the entropy is
better defined and connected simply to magnetization.

One should mention also the initial selection of population as an significant factor
influencing the optimization run. In the calculations presented above the determination
of initial direction of every spin needed two samplings. For every spin the individual
probability of being directed up or down is sampled from the uniform distribution [0, 1].
Then the direction of spin is finally determined on the basis of comparison of newly
sampled random with this probability. We tried also to use the second mechanism where
every spin has just the same probability (in our calculations 1/2) to be set in one of
two possible directions. The differences in the shape of initial energy (not the Gibbs
free energy) and magnetization distributions are shown on fig.2. The plots obtained
using second method are visibly narrower thus should lead to the better results for the
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Figure 4. Free energy distribution in different generations. Columns correspond to the method
of initial population selection: left - totally random, right - p = 1/2. In successive rows there
are different types of simulation: 1 - FE1, 2 - FE2, 3 - PE1, 4 - PE2.



paramagnetic case. This observation is hovewer not confirmed in calculations.

We tried also to study in two ways the dynamics of optimization. Figure 3 presents
the average free energy in the population when started from the initially equilibrium
distribution of up and down spins. Certainly this plot cannot be directly compared
to the results from table 1 where the first existence of minimum is grabbed. It gives
the information about the diversity of population. It is interesting that for the pair
approximation quite fast the populations become uniform. There is no additional, except
of mutation, mechanism leading to artificial differentiating. For the same population
index, populations obtained using Tsallis entropy are, in spite of smaller set of acceptable
values still diversified.

Figure 4 shows the free energy distribution for selected generations in the logarithmic
scale. The difference which is seen already in the initial generation, promotes to the next
ones, even thousands later. The distributions for totally random sampling are asymmetric
with maximum for higher energies and almost already after genetic procedure starts the
maximum of distribution shifts to the value of global minimum. For p = 1/2 the plots
are symmetric and this symmetry is observed for all generations even when the global
minimum is reached.

Summarizing, we want to underline that for the case of NP hard problem of magne-
tic system minimization the crucial problem is rather the physical description and the
sensible choice of initial conditions not a form of evolutionary operators. This, sharply
simplified, conclusion is true for the basic magnetic model and its extension to the models
where also the form will be of great importance, can make the solution hard challenge.
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