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Abstract. Two models for global optimization are considered: statistical model,
and radial basis functions. The equivalence of both models in the case of opti-
mization without noise is discussed. Both models are also evaluated with respect
to global optimization in the presence of noise by means of experimental testing
where approximation errors of passive one dimensional algorithm are estimated.

1 Introduction

Global optimization is a difficult problem. It becomes especially difficult in cases of
computationally intensive objective functions, and in cases of optimization in the presence
of noise. We consider two approaches aimed to attack the mentioned difficult problems:
the first approach is based on statistical models, and the second approach is based on
approximation by radial basis functions. The idea to construct a global optimization
method using a stochastic function for a model of objective functions was originally
proposed in [5, 6], and axiomatically justified in [12, 13]. Various algorithms based on
statistical models are considered, e.g. in the books [7, 10, 11]. The idea to develop a
global optimization algorithm using the interpolation of an objective function by a radial
basis function (RBF) was proposed in [4]; some new results are presented in [8]. As the
main application area of algorithms based on both approaches is supposed optimization of
expensive objective functions; statistical approach seems also promising for the originally
targeted problems of global optimization in the presence of noise [5, 6]. Although basic
assumptions of both approaches seem very different there have been mentioned surprising
similarities of the algorithms of both types; see [4].

In the present paper we show the identity of the so called P-algorithm (see [12, 13]),
and the algorithm based on the interpolation of an objective function by a RBF; our
version of the proof is shorter than that in [4]. Further we compare both (statistical and
RBF) models with respect to the application for minimization in the presence of noise.
The problem of global optimization in the presence of noise using a statistical model is
considered, e.g. in [2] where the complexity of the problem is discussed. To the best
knowledge of the author of this paper RBF models have not been used yet to construct
algorithms for global optimization in the presence of noise. Combining of advantages of
both approaches can be helpful to attack this indeed difficult problem.

2 Optimization without Noise

A minimization problem is considered where the objective function is denoted by f(x), x ∈
A ⊆ Rd. Let n function values be known (computed or observed): yi = f(xi), i = 1, ..., n.



An optimization algorithm should define the next observation point xn+1, and in the most
general case xn+1 can depend on all available information on f(x) including xi, yi, i =
1, ..., n.

The P-algorithm is defined using a stochastic function ξ(x) for a statistical model of
objective functions, and the idea to maximize the probability of improvement at current
minimization step defined with respect the model [13, 11]:

xn+1 = arg max
x∈A

P{ξ(x) ≤ ỹon|ξ(xi) = yi, i = 1, ..., n}, (1)

where ỹon is a level aimed to exceed downwards at (n + 1)-st minimization step, e.g.
ỹon = yon−εn, yon = mini=1,...,n yi, εn > 0. Assuming ξ(x) Gaussian stochastic function
the maximization in (1) can be reduced to the maximization of

ỹon −mn(x|ξ(xi) = yi, i = 1, ..., n)
sn(x|ξ(xi) = yi, i = 1, ..., n)

, (2)

where mn(x|xi, yi, i = 1, ..., n) and s2
n(x|ξ(xi) = yi, i = 1, ..., n) denote the conditional

mean and the conditional variance of ξ(x) with respect to ξ(xi) = yi, i = 1, ..., n, cor-
respondingly. Characterization of the P-algorithm by means of maximization of (2) is
sufficient for the further analysis in the present paper.

An interesting global optimization method is proposed in [4] using the idea of interpo-
lation by a radial basis function. Let the values of the objective function yi = f(xi), i =
1, ..., n be known, and a point for next observation should be chosen. A values of an
objective function f(·) at an arbitrary point x ∈ Rd can be predicted by the radial basis
function

µn(x|xi, yi, i = 1, ..., n) =
n∑

i=1

λiφ(||x− xi||), (3)

that interpolates the data (xi, yi = f(xi)), i = 1, ..., n. A naive idea to perform the
next observation at the minimum point of the response surface defined by (3) should
be rejected because of known disadvantages discussed, e.g. in [11]. The more sophisti-
cated idea of an algorithm proposed by Gutmann is discussed below, after few remarks
concerning the interpolating function (3). We use a standard form of RBF [1] without
the extra polynomial summands used elsewhere. Different basis functions φ(·) can be
chosen, e.g. the Gaussian function φ(r) = exp(−γr2), r ≥ 0, γ > 0. The coefficients λi

are defined by the system of linear equations µn(xi|·) = yi, i = 1, ..., n whose solution is
guaranteed by the positive definiteness of the matrix Φ = (φ(||xi − xj ||)).

Although statistical models and RBF models root in different theoretical concepts,
the heuristic ideas of the algorithms of both types are similar. The P-algorithm for
current observation chooses the point where it is most probable to descend below the
target level ỹon. By the RBF based algorithm the current observation of f(·) is performed
at the point where the value of f(·) equal to the target value ỹon is most likely. The
definition of the radial basis function, e.g. (3), does not directly imply likelihood of
various function values. However, some evaluation of the likelihood can be derived from
the general concepts of rationality: an interpolating function can be considered most
suitable if adding/removing of a point implies minimal changes in characteristics of the
interpolating function. A natural criterion to evaluate suitability of an interpolating



function to given data is a norm of the considered interpolating function; for a definition
of a (semi)norm of a RBF we refer to [3].

Let the known function values yi = f(xi), i = 1, ..., n be interpolated by means of
RBF. The point of the next observation is chosen aiming to get the target value of the
objective function equal to ỹon, and minimally increasing the norm of the interpolant
implied by the augmentation of xi, yi, i = 1, ..., n with xn+1, ỹon. Let us find a point xn+1

such that the norm of µn+1(x|xi, yi, i = 1, ..., n + 1) was minimal, where yn+1 = ỹon.
Such a point for the value ỹon seems most ’likely’ assuming that the behavior of the
minimal norm interpolating function is most natural of all interpolators. According to
the terminology of [4] such choice of xn+1 minimizes ’bumpiness’ of the response surface.
Formally, the algorithm is constructed sequentially tuning the radial function interpolant
by means of minimization of the semi-norm with respect to the forecasted global minimum
value ỹon.

In the formulas below we use the shorthand µn(x) = µn(x|·), and the notations

Λ = (λ1, ..., λn)T , Φ(x) = (φ(||x− x1||), ..., φ(||x− xn||))T . (4)

The formula (3) using these notations can be rewritten in the form µn(x) = ΛT Φ(x).
Similarly the RBF interpolator using an extended set of data (xi, yi), i = 1, ..., n + 1 is
defined by the formulas

µn+1(x) =
n+1∑

i=1

ωiφ(||x− xi||) = ΩT ·
(

Φ(x)
φ(||x− xn+1||)

)
. (5)

The vectors of coefficients ΛT and ΩT can be calculated as solutions of systems of
linear equations corresponding to the condition of interpolation

Λ = Φ−1 · Y, Y =




y1

...
yn


 , M = Ψ−1 ·

(
Y
ỹon

)
,

Φ =




φ(0) ... φ(||x1 − xn||)
... ... ...

φ(||xn − x1||) ... φ(0)


 ,

Ψ =
(

Φ Φ(xn+1)
Φ(xn+1)T φ(0)

)
. (6)

The squared semi-norm of µn+1 is equal to

||µn+1(x)||2 = MT ΨM = (Y T , ỹon)Ψ−1

(
Y
ỹon

)
, (7)

where the expression of M from (6) is taken into account.
To invert matrix Ψ presented as a block matrix in (6) the formula by Frobenius can

be applied

Ψ−1 =
(

Φ−1 + 1
hΦ−1Φ(xn+1)Φ(xn+1)T Φ−1 − 1

hΦ−1Φ(xn+1)
− 1

hΦ(xn+1)T Φ−1 1
h

)
, (8)



where
h = φ(0)− Φ(xn+1)T Φ−1Φ(xn+1). (9)

Calculation of the norm (7) using the latter expression of Ψ−1 gives the following
result

||µn+1(x)||2 = (Y T , ỹon)Ψ−1

(
Y
ỹon

)
= (Y T , ỹon) ·

·
(

Φ−1Y + 1
hΦ−1Φ(xn+1)Φ(xn+1)T Φ−1Y − ỹon

h Φ−1Φ(xn+1)
− 1

hΦ(xn+1)T Φ−1Y + ỹon

h

)
=

= ΛΦΛ + (ỹon−Φ(xn+1)
T Φ−1Y )2

φ(0)−Φ(xn+1)T Φ−1Φ(xn+1)
. (10)

From (10) the subsequent equality follows

||µn+1(x)||2 = ||µn(x)||2 +
(ỹon − Φ(xn+1)T Φ−1Y )2

φ(0)− Φ(xn+1)T Φ−1Φ(xn+1)
,

where the first summand does not depend on xn+1. Therefore for the next observation
a minimum point xn+1 of the following function

(ỹon − Φ(xn+1)T Φ−1Y )2

φ(0)− Φ(xn+1)T Φ−1Φ(xn+1)
, (11)

should be chosen.
Let us consider a homogeneous isotropic Gaussian random field ξ(x), x ∈ Rn with zero

mean and covariance function φ(·). The conditional mean and the conditional variance
of ξ(x) with respect to ξ(xi) = yi, i = 1, ..., n, is equal to

mn(x|ξ(xi) = yi, i = 1, ..., n) = Φ(x)T Φ−1Y,

s2
n(x|ξ(xi) = yi, i = 1, ..., n) = φ(0)− Φ(x)T Φ−1Φ(x),

correspondingly. Therefore the maximization of (2) is reduced to the maximization of

ỹon − Φ(xn+1)T Φ−1Y√
φ(0)− Φ(xn+1)T Φ−1Φ(xn+1)

. (12)

The minimization of (11) is equivalent to the maximization of (12), since the expres-
sion of (11) is equal to the squared expression of (12), and the target level ỹon is naturally
chosen less than min mn(x|ξ(xi) = yi, i = 1, ..., n). The latter conclusion means that the
statistical model based P-algorithm and the RBF model based algorithm are identical.
For the asymptotic analysis of the convergence of the corresponding algorithm the well
developed theory of interpolation by RBF (see, [1]) can be useful. On the other hand, a
statistical model can be especially useful to justify the statistical estimation of the model
parameters, e.g. of the parameter γ in case φ(r) = exp(−γr2)). Let us note, that the
suitable choice of parameters is crucial for the practical performance of the algorithm



measured after restricted number of iterations; for the use of statistical models with
tuned parameters for interpolation we refer to [9].

3 Optimization in the Presence of Noise

The P-algorithm for minimization in the presence of noise is a simple generalization of
the corresponding algorithm for minimization without nose; it is defined by an expression
similar to (1), where the conditional probability is calculated with respect to the noisy
data. The noise is modelled by the independent random variables ξi, and the available
information about the objective function is (xi, zi), i = 1, ..., n, zi = f(xi)+ξi. Let ξ(x) (a
model of objective functions) be a stationary (homogenous, isotropic) Gaussian stochastic
function with zero mean, unit variance, and correlation function φ(x) depending only on
||x||. Let ξi be Gaussian random variables with zero mean and variance σ2

t . Similarly
as in the case without noise the construction of P-algorithm can be reduced to the
maximization of (12) where yi, i = 1, ..., n are replaced by zi, i = 1, ..., n, and the diagonal
elements of the matrix Φ are replaced by 1 + σ2

t . Although both versions of P-algorithm
are similar from the theoretical point of view, the implementation of the version for noisy
minimization is more complicated, at least because of considerably larger, than in the
case without noise, number of observations needed to achieve an acceptable accuracy.

A generalization of an RBF based algorithm to the noisy case is not so straightforward.
The question about the similarity between the P-algorithm and the RBF model based
algorithm in the noisy case also is not yet answered.

Prior to the investigation of sophisticated algorithms it seems reasonable to compare
both models with respect to the simplest, i.e. passive, algorithm. The randomized version
of the passive algorithm is considered where function values (in the presence of noise)
are observed at random points uniformly distributed in the feasible region. A statistical
model and a RBF model are applied to evaluate function values at arbitrary points as
well as global minimum using the noisy observations of the passive algorithm.

Let (xi, zi), i = 1, ..., n are known where xi are random points with uniform distri-
bution over the feasible region, and zi = f(xi) + ξi. An unknown value f(x) can be
approximated using the statistical model ξ(·) by the conditional expectation of ξ(x) with
respect to ξ(xi) + ξi = zi, i = 1, ..., n: Mn(x|ξ(x) + ξi = zi, i = 1, ..., n). It is well known
that

Mn(x|ξ(x) + ξi = zi, i = 1, ..., n) = (13)

= (φ(||x− x1||), ..., φ(||x− xn||)) ·



1 + σ2
t ... φ(||x1 − xn||)

... ... ...
φ(||xn − x1||) ... 1 + σ2

t



−1

·



z1

...
zn


 .

Originally RBF have been applied for interpolation of multidimensional spatial data.
Extension of RBF for approximation of data corrupted by random errors can be based,
e.g. on the idea of least squares where the coefficients λi in (3) are chosen to satisfy the
equality

n∑

i=1

(zi − µn(xi))2 = nσ2
t , (14)



and to minimize the semi norm of µn(·)

‖µn(·)‖ =




n∑

i=1

n∑

j=1

λiλjφ(‖xi − xj‖)



1/2

. (15)

It can be shown that the vector of optimal coefficients Λ = (λ1, ..., λn)T is defined by
the following system of equations

Λ = (Φ + I · 1
ν

)−1 · Z, (16)

ν2 =
‖Λ‖2
nσ2

t

,

where I denotes the unit matrix. The equations (16) imply the following expression of
the approximating RBF

Υn(x|ξ(x) + ξi = zi, i = 1, ..., n) = (17)

= (φ(||x− x1||), ..., φ(||x− xn||)) ·



1 + 1/ν ... φ(||x1 − xn||)
... ... ...

φ(||xn − x1||) ... 1 + 1/ν



−1

·



z1

...
zn


 .

The comparison of (13) and (17) enlightens similarity and difference between the
statistical model based and the RBF based approximating functions. The structure
of expressions defining both functions are identical up to the diagonal elements of the
matrices. In (13) the diagonal element is equal to 1+σ2

t , and the diagonal element in (17)
is equal to 1+1/ν. The increase of diagonal elements implies the increase of smoothness
of the corresponding function. The parameter σ2

t has an obvious meaning, and can be
estimated by means of a standard method of mathematical statistics. The parameter 1/ν
depends not only on σ2

t but also on the function values and on the involved RBF. Average
values of 1/ν for two test functions are estimated by means of a modelling experiment
using the RBF defined by the formula φ(r) = exp(−γr2). The following test functions
were used

f1(x) = sin(x) + sin(10x/3) + ln(x)− 0.84x + 3, 2.7 ≤ x ≤ 7.5,

f2(x) = sin(x) + sin(2x/3), 3.1 ≤ x ≤ 20.4,

where feasible intervals were rescaled to [0,1], and function values were rescaled to ensure
zero mean and variance equal to 1. The sample of size N = 100 consisted of n = 120
noisy function values defined at random points uniformly distributed over the feasible
interval; ”noise” was modelled by independent Gaussian random values with zero mean
and variance σ2

t . The parameter 1/ν was estimated for several values of σt representing
strong and medium noise, and several values of γ similar to the average values of the
maximum likelihood estimates equal to 55 for f1(·) and equal to 52 for f2(·).

The results presented in Table 1 show that the diagonal elements in (17) are larger
than that in (13), meaning that approximating RBF is smoother than the statistical
model based approximating function. The variance of estimates is rather large; one of
reasons of worsening the estimate is ill conditioning of the correlation matrix.



Table 1. Estimates of mean and standard deviation of 1/ν.

Parameters f1 f2

mean std mean std

σt = 0.5, γ = 60 1.2560 0.9786 1.2109 0.7753
σt = 0.5, γ = 50 1.0890 0.9516 0.8947 0.7510
σt = 0.5, γ = 40 0.9039 0.7570 0.6555 0.5541
σt = 0.3, γ = 50 0.5227 0.3909 0.4325 0.2920
σt = 0.1, γ = 50 0.1110 0.0800 0.1180 0.0795

The randomized passive global optimization algorithm evaluates objective function
values at n random points uniformly distributed over the minimization interval, and
minimum of the approximating function, (13) or (17), is accepted to approximate global
minimum. Mean values and standard deviations of approximation errors, measured as
differences between the true minimum and approximations, are presented in Table 2 and
Table 4 below. The estimates of errors of approximation of f1(·) are presented in Table 3;
mean square errors were evaluated using the same values that were used for minimization,
and they were averaged for a sample of size N = 100.

Table 2. Precision of estimating global minimum of f1(·).
n stat. mod. RBF

mean std mean std

40 -0.0647 0.2078 -0.3639 0.1758
80 -0.0446 0.1715 -0.2153 0.1587
120 -0.0231 0.1621 -0.1536 0.1249
160 -0.0149 0.1377 -0.1086 0.1297
200 -0.0242 0.1219 -0.0971 0.1100

Table 3. Precision of estimating function values of f1(·).
n stat. mod. RBF

m.sq.r. std m.sq.r. std

40 0.2920 0.0974 0.3952 0.1104
80 0.1952 0.0538 0.2556 0.0656
120 0.1632 0.0481 0.2107 0.0517
160 0.1381 0.0348 0.1740 0.0455
200 0.1231 0.0354 0.1518 0.0428

Quantitatively results for both test functions are very similar. The estimates of min-
imum are biased to the direction of overestimation, and the bias is much larger for the
RBF based algorithm than for the statistical algorithm. The latter empirical result well
corroborates our previous conclusion that the RBF based approximant is smoother (i.e.
also more biased towards to average of function values) than that based on the statis-
tical model. The average of square root errors of approximation of values of f1(·) (see
Table 3) is larger than standard deviation of errors in estimating global minimum; this
can be explained by more smooth behavior of the objective function in the neighborhood
of global minimizer than in average.



Table 4. Precision of estimating global minimum of f2(·).
n stat. mod. RBF

mean std mean std

40 -0.1941 0.2436 -0.6187 0.2697
80 -0.0876 0.1868 -0.3616 0.1841
120 -0.0697 0.1593 -0.2464 0.1532
160 -0.0334 0.1311 -0.1693 0.1179
200 -0.0430 0.1259 -0.1521 0.1169

4 Conclusions

The identity between statistical model based P-algorithm and RBF model based algo-
rithm does not extend to noisy case but some similarity between these algorithms is likely.
Implementation of adaptive algorithms based on both models is challenging because of
difficulties in inverting large ill defined matrices. An extra challenge for RBF model is
estimation of parameters of the model.
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