
Parallel Tabu Search for Graph Coloring Problem

Jacek Da̧browski1 and Marek Kubale2

1 Gdańsk University of Technology, Faculty of Electronics, Telecommunications and
Informatics, Gdańsk, Poland, email: Jacek.Dabrowski@eti.pg.gda.pl

2 Gdańsk University of Technology, Faculty of Electronics, Telecommunications and
Informatics, Gdańsk, Poland, email: kubale@eti.pg.gda.pl

Abstract. Tabu search is a simple, yet powerful meta-heuristic based on local
search that has been often used to solve combinatorial optimization problems like
the graph coloring problem. This paper presents current taxonomy of parallel
tabu search algorithms and compares three parallelization techniques applied to
Tabucol, a sequential TS algorithm for graph coloring. The experimental results
are based on graphs available from the DIMACS benchmark suite.

1 Introduction

Graph coloring has been an attractive field for more than a century with many thou-
sands of papers dealing with the study of chromatic properties of graphs. As people
were becoming used to applying the tools of graph theory to the solution of real-world
technological and organizational problems, chromatic models appeared as a natural way
of tackling many practical situations. One of the models of graph coloring with relatively
many applications appears to be the vertex coloring problem, which we simply call the
graph coloring problem (GCP).

A coloring of a graph G = (V,E), where V is the set of n = |V | vertices and E is
the set of edges, is a mapping c : V 7→ 1..k, such that for each edge {u, v} ∈ E we have
c(u) 6= c(v). Optimization version of GCP is stated as follows: given a graph G, find a
coloring with the minimum number k of colors used. This number is referred to as χ(G),
the chromatic number of graph G. The GCP is a well-known NP-hard combinatorial
optimization problem.

Tabu search(TS) is a metaheuristic based on a local search approach: it is an iterative
procedure that tries to improve on current solutions by exploring its neighborhood and
the best candidate as the new current solution. The main concept in tabu search is a tabu
list which keeps track of recently visited solutions to avoid cycling or getting trapped in
a local optimum.

Parallel computation aims at solving problems quicker than sequential methods. In
broad terms, this means either ”find a solution of a similar quality faster” or ”find a
solution of a better quality in a comparable time”. Parallel implementations are often
more robust than the sequential ones, providing better solutions consistently over diverse
sets of problem instances.

This paper is organized as follows. Section 2 reviews parallel tabu search models.
Section 3 presents tabu search applications to GCP. Section 4 describes in detail three

parallel algorithms used in this work. Section 5 presents experimental results from several
runs on standard benchmark graphs1 as well as pseudorandom graphs.

2 Parallel tabu search

There are two main approaches to tabu search parallelization. It can be done at a low
level, where the parallel processing is used only to speed up tasks with high computation
cost (e.g., neighborhood evaluation). This means that the behavior of the search is
the same as that of a sequential algorithm, the difference is in wall-clock time. High
level parallelism means simultaneous operation of multiple searches either independent
or cooperating.

In [3] Crainic, Toulouse and Gendreau introduced a three-dimensional taxonomy for
parallel tabu search methods. The first dimension, Search Control Cardinality, decides
whether the search process is controlled by a single master processor (1-control, 1C) or
each of p processors controls its own search (p-control, pC).

The second dimension, Control and Communication Type, is based on the commu-
nication scheme. There are four stages that define the operation mode (synchronous /
asynchronous) and the type and amount of information shared. The first stage, Rigid
Synchronization (RS), corresponds to simple synchronous communication with limited
information exchange. For 1-control approach RS means that communication is initiated
exclusively by master and it is used only to delegate computing intensive tasks to slaves.
For p-control every process performs its own search and there is no communication be-
tween them. The best solution is selected once all processes have stopped. The second
stage, Knowledge Synchronization(KS), increases the level of communication, allowing
knowledge exchange. For 1-control the difference is in the complexity of the task assigned
to slaves, for p-control KS means that all processes stop at a predetermined moment and
begin a phase of information exchange. The information can be used to improve the
individual searches.

Last two stages operate in asynchronous mode. It means that processes communicate
after events (e.g., finding an improved solution) rather than at a specific stage of the
algorithm or after predetermined number of moves. In the Collegial (C) stage each
process executes a tabu search. When an improved solution is found, it is broadcast to
other peers. The most advanced model is Knowledge collegial (KC). Here, the contents of
communications are analyzed to retrieve additional information concerning global search
trajectory and global characteristics of good solutions.

The third dimension, Search Differentiation Strategy, indicates whether the searches
start from a single point or from different points in solution space and whether the
used search strategies are the same or different. The four cases are: SPSS: Single
(initial)Point Single Strategy, SPDS: Single Point Different Strategies, MPSS: Multiple
Points Single Strategy and MPDS: Multiple Points Different Strategies.

3 Parallel tabu search algorithms for GCP

This section contains descriptions of three parallelization models used in this paper. All
three are based on a well-studied Tabucol algorithm introduced in 1987 by Hertz and de

1ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/

Werra [5].
Tabucol is the first tabu search algorithm proposed for GCP. In particular it solves

the decision version of the problem. For a given graph G and k the search space explored
is the set of k-colorings of graph G. The goal is to find a coloring without any conflicting
edges.

The evaluation function f measures the number of conflicting edges in the solution.
For a coloring c : V 7→ 1..k the value of f(c) is equal to |{u, v} ∈ E : c(u) = c(v)|.
Tabucol uses a simple 1-exchange neighborhood, where a move is a pair (v, i) denoting
assignment of color i to vertex v. After a move is performed the pair (v, i) becomes a
tabu move for bL + λf(c)c succeeding iterations. Most implementations use λ = 0.6 and
choose L randomly in [0..9].

Algorithms presented in this paper solve optimization version of the graph coloring
problem. The initial coloring is generated using DSATUR greedy heuristic [2]. At the
beginning of each iteration if the current solution x is a valid coloring (f(x) = 0) the
smallest color class is removed, and the vertices are reassigned. The tabu search is used
to reduce the number of conflicting edges in the solution.

4 Implementation

The following subsections describe three models used in this work to solve GCP with
parallel tabu search algorithm.

4.1 Master-slave search

The first algorithm is a low-level parallelization of Tabucol. The neighborhood N
is divided into p subsets Ni. During each iteration every processor evaluates its part
of the neighborhood and sends the best move to the master. The master evaluates
the candidate moves, selects the best among them and broadcasts it. To speed up the
exploration every process keeps its own copy of tabu list.

Algorithm 1 Master-slave search
x← DSATUR(G) . use a greedy heuristic to generate initial solution
while stop-condition do

while f(x) = 0 do . while x is a valid coloring
x←REDUCE(x) . reduce number of colors

end while
m←best allowed move in Ni . ties are broken randomly
if processor is slave then

send m to master
M ← receive selected move from master

else
moves[]← receive moves from slaves
M ← select best move from moves[] . ties are broken randomly

end if
x← x + M . perform the chosen move
update tabu list

end while

According to the aforementioned taxonomy this algorithm should be classified as
1C/RS/SPSS. The behavior of this algorithm is almost the same as that of a sequential
implementation. The difference is that ties are broken at Ni level, which means in fact
that not all best moves have the same probability of being chosen. For large graphs the
speedup is expected to be proportional to the number of processors.

4.2 Independent search

A completely different approach to parallelization has been used in the second algo-
rithm. Here we use p independent searches, each working on its own solution. Since there
is no knowledge sharing between processors, the algorithm can be classified as pC/RS.
As for the third dimension, Search Differentiation Strategy, two versions of the algorithm
were compared - MPSS and MPDS. In the latter case the difference lies in the tabu
tenure: λ parameter is distributed evenly in the range [0.4, 0.9].

This approach should broaden the search increasing the rate of success. A small
improvement in speed is also expected due to random nature of the search process.

Algorithm 2 Independent search
x← DSATUR(G) . use a greedy heuristic to generate initial solution
while stop-condition do

if f(x) = 0 then
while f(x) = 0 do . while x is a valid coloring

x←REDUCE(x) . reduce number of colors
end while
report the solution to master

end if
m←best allowed move in N . ties are broken randomly
x← x + M . perform the chosen move
update tabu list

end while

4.3 Cooperating search

The last approach can be classified as pC/KS/MPSS. It is based on the independent
search with the following improvement. Whenever a new valid coloring is found, it is
sent to the master. The master reduces the number of colors and sends the new coloring
to all processors. The slaves abandon their current search and use the received solution
to start a new one. The tabu list is not copied.

5 Results

The experiments were performed on holk cluster in TASK Academic Computer Centre2.
Holk has 256 1.3 GHz Intel Itanium 2 processors with 3MB L3 cache memory.

2http://www.task.gda.pl/

Algorithm 3 Cooperating search
x← DSATUR(G) . use a greedy heuristic to generate initial solution
while stop-condition do

if f(x) = 0 then
while f(x) = 0 do . while x is a valid coloring

x←REDUCE(x) . reduce number of colors
end while
send x to master

end if
if processor is slave then

if a new solution is available from master then
x← receive solution from master

end if
else

if a better solution is available from any of the slaves then
x← receive solution from slave
send x to all slaves

end if
end if
m←best allowed move in N . ties are broken randomly
x← x + M . perform the chosen move
update tabu list

end while

Parallel implementation was based on LAM-MPI. MPI, Message Passing Interface,
is a library of routines that can be called from Fortran, C, C++ and Ada programs3.
MPI ’s advantage over older message passing libraries is that it is both portable (because
MPI has been implemented for almost every distributed memory architecture) and fast
(because each implementation is optimized for the hardware it runs on).

5.1 Results for master-slave search

The first experiment was to determine how low-level parallelization influences the
speed of the search. A large random graph: DSJC1000.5 has been colored using 1, 2, 4
and 8 processors. All runs had a time limit of one hour. Table 1 presents results of those
runs: number of tabu search iterations calculated within time limit, number of iterations
calculated per second and speedup: the ratio of the time of sequential execution to the
time of parallel execution.

It was observed that for the Tabucol -based algorithm the parallel implementation
performs worse than the sequential one not only in terms of total computation time,
but also in terms of wall-clock time. Although the neighborhood evaluation is a task
with the highest computation cost (O(|V | ∗ k)), it is not large enough to be a reason for
parallelization. Therefore this approach was not investigated further.

3http://www.mpi-forum.org/

Table 1. Results for master-slave search

number of processors: 1 2 4 8
number of iterations: 4015000 3734000 3661000 2861000
iterations per second: 1115 1037 1016 795
speedup 1 0.93 0.912 0.712

5.2 Results for independent search

In this experiment the behavior of independent search threads was investigated. The
best solution of all threads is considered to be the best solution of the parallel algorithm.
Therefore the average performance of the parallel search is better than the performance
of a single search. Table 2 shows how long it takes to find a valid k-coloring for different
values of k.

Table 2. Results for independent search

1 processor 10 processors
graph k successful runs time [s] successful runs time [s]
DSJC1000.5 115 10/10 3 3/3 0
|V | = 1000 105 10/10 42 3/3 29
|E| = 249826 100 10/10 142 3/3 104

95 7/10 1381 3/3 887
94 2/10 2503 3/3 2427

DSJC500.5 60 10/10 4 3/3 0
|V | = 500 55 10/10 32 3/3 24
|E| = 6262 54 8/10 66 3/3 44

53 5/10 421 3/3 221

5.3 Single strategy vs different strategies

Some experiments were performed to determine if using independent searches with
different values of λ and L parameters defining the tabu tenure would improve the be-
havior of the algorithm. For p processors λ is distributed evenly in [0.4, 0.9] range and L
in [5..20]. No significant differences were observed when compared to the MPSS model.

The strategies might be differentiated by other characteristics, e.g. neighborhood
structure. These possibilities have not been investigated in this work.

5.4 Independent search vs cooperating search

More experiments were performed to check if knowledge sharing would improve the
results. Table 3 provides results for several graphs from the DIMACS suite.

For the two large graphs: DSJC1000.5 and flat1000 50 0 the time limit was set
to two hours, for smaller graphs it was one hour. The runs were conducted using 10

processors.
Knowledge sharing improves the behavior of the algorithm. For easy colorings that

are found within one minute the speedup is not obvious because of the communication
overhead created by frequent colorings exchange. Cooperating search also improves the
success rate within the specified time limit.

Table 3. Results for cooperating search

pC/RS/MPSS pC/KS/MPSS
graph k successful runs time [s] successful runs time [s]
DSJC1000.5 110 3/3 14 3/3 10
|V | = 1000 100 3/3 142 3/3 116
|E| = 249826 95 3/3 887 3/3 754

94 3/3 2427 3/3 1908
93 0/3 - 1/3 3275

DSJC500.5 55 3/3 24 3/3 26
|V | = 500 54 3/3 44 3/3 38
|E| = 62624 53 3/3 221 3/3 240
flat1000 50 0 110 3/3 6 3/3 7
|V | = 1000 100 3/3 184 3/3 116
|E| = 245000 95 3/3 311 3/3 346
χ = 50 93 3/3 3816 3/3 1267

92 1/3 5806 3/3 6748
flat300 28 0 36 3/3 3 3/3 3
|V | = 300 35 3/3 8 3/3 5
|E| = 21695, χ = 28 34 1/3 67 3/3 63
le450 25c 28 3/3 3 3/3 3
|V | = 450 27 3/3 56 3/3 64
|E| = 17343, χ = 25 26 0/3 - 0/3 -

5.5 Results for random graphs

This section gives the results of experiments on random graphs. A random graph
Gn,p has n vertices and every two vertices are joined by an edge with probability p. For
every pair of n and p five graph instances were generated.

In [6] Johri and Matula have presented means to calculate χ∗, the estimated chromatic
number and χ∗, a probabilistic lower bound for the chromatic number. In our experiments
the probability that χ(Gn,p) ≥ χ∗ was greater than 1− 10−6.

Tables 4 and 5.5 compare greedy algorithm DSATUR and sequential tabu search with
cooperating parallel tabu search using 4 and 16 processors. The results were averaged
over five runs for each of the five instances of Gn,p. Computation time of DSATUR
algorithm was less than one second for all graphs.

In the first experiment tabu search was allowed to run for a specified amount of time.
Table 4 shows the average number of colors used in the best coloring found.

Based on the results from the first experiment tabu search was configured to look
for solutions using at most k colors. Table 5.5 shows the success rate and the average
time needed to find a solution of a specified quality for p = 0.5. The run was considered
unsuccessful if a solution was not found within the time limit of sixty seconds for every
hundred vertices.

Using 16 processors improved the best coloring found for each instance by one or two
colors. Cooperating search found good solutions faster and with greater probability.

Table 4. Average number of colors used

time processors
n p χ∗ χ∗ DSAT limit [s] 1 4 16

0.25 10 6 10.3 9.0 9.0 9.0
100 0.50 16 11 17.8 30 16.0 15.6 15.1

0.75 26 19 30.0 25.9 25.2 25.0
0.25 19 14 22.5 19.0 18.5 18.4

300 0.50 35 27 43.2 90 35.7 35.4 35.1
0.75 57 48 72.7 60.6 59.6 58.9
0.25 27 20 33.1 27.5 27.3 27.0

500 0.50 50 41 65.2 150 54.1 53.6 53.1
0.75 86 74 110.6 92.4 91.6 91.0

Table 5. Average times of finding a valid k-coloring

1 processor 4 processors 16 processors
n χ∗ DSAT k succ time(σ) succ time(σ) succ time(σ)

100 16 17.7 16 25 0.1(0.3) 25 0.2(0.6) 25 0.0(0.2)
15 3 2.3(3.3) 11 0.7(1.1) 22 2.4(9.8)

200 26 31.0 26 24 7.7(10.0) 25 2.8(4.0) 25 1.6(1.4)
25 1 35.0(0.0) 3 8.0(4.3) 16 28.9(30.5)

300 35 42.6 36 23 19.7(22.4) 25 6.0(3.0) 25 3.4(1.6)
35 6 38.8(25.5) 19 37.2(33.4) 25 23.2(19.6)

400 43 54.5 45 25 40.9(30.9) 25 22.1(16.9) 25 13.3(5.9)
44 6 64.8(36.3) 16 85.2(45.8) 22 42.8(29.2)

500 50 64.8 54 25 78.4(47.4) 25 46.6(17.0) 25 31.0(8.7)
53 11 122.5(40.3) 19 164.7(69.2) 25 105.9(61.7)

6 Concluding remarks

For the coarse-grained architecture of holk cluster it was shown that the simple master-
slave algorithm is slower than the sequential algorithm executed on a single processor.
However this might not be true for a shared-memory architecture environment. The

multiple path strategy proved to be successful in improving the quality of best solution
found. It also reduced time needed to find k-colorings for given values of k.

Many recently proposed graph coloring techniques use tabu search or other local
search algorithms as means to improve solutions. Galinier and Hao [4] in their genetic-
local search hybrid method perform a TS before inserting the result of a crossover into
the population. In variable neighborhood search [1] during every iteration the algorithm
makes a big, variable move (change) to current solution and tries to improve it with
Tabucol. Both techniques could perform significantly better if they were to make use of
parallel computation. This possibility should be investigated further.

Bibliography

[1] C. Avanthay, A. Hertz, and N. Zufferey. Variable neighborhood search for graph
coloring. European Journal of Operational Research, 151:379–388, 2003.

[2] D. Brélaz. New methods to color the vertices of a graph. Communications of the
ACM, 22:251–256, 1979.

[3] T.G. Crainic, M. Toulouse, and M. Gendreau. Towards a taxonomy of parallel tabu
search heuristics. INFORMS Journal of Computing, 9:61–72, 1997.

[4] P. Galinier and J.-K. Hao. Hybrid evolutionary algorithm for graph coloring. Journal
of Combinatorial Optimization, 3:379–397, 1999.

[5] A. Hertz and D. de Werra. Using tabu search techniques for graph coloring. Com-
puting, 39:345–351, 1987.

[6] A. Johri and D.W. Matula. Probabilistic bounds and heuristic algorithms for coloring
large random graphs. Technical report, Southern Methodist University, 1982.

