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Abstract. This paper presents a novel approach to data clustering and multiple-
class classification problems. The proposed method is based on a metaphor derived
from immune systems, the clonal selection paradigm. A novel clonal selection
algorithm – Immune K-Means, is proposed. The proposed system is able to cluster
real valued data efficiently and correctly, dynamically estimating the number of
clusters. In classification problems discrimination among classes is based on the k-
nearest neighbor method. Two different types of suppression are proposed. They
enable the evolution of different populations of lymphocytes well suited to a given
problem: clustering or classification. The first type of suppression enables the
lymphocytes to discover the data distribution while the second type of suppression
focuses the lymphocytes on the classes’ boundaries. Primary results on artificial
data and a real-world benchmark dataset (Fisher’s Iris Database) as well as a
discussion of the parameters of the algorithm are given.

1 Introduction

Clustering is an important task in machine learning and data mining. Its main goal is to
find the clusters’ centers that properly describe data distribution. It leads to information
compression and provides the knowledge for many properties of the data. It is often used
as a first step in analyzing large amount of data, data visualization, in image compression
and also in classification. There are many clustering algorithms starting with the most
known and simple like k-means clustering, fuzzy k-means, ending with more complex
and also time demanding. Time complexity is especially important when large datasets
are to be clustered. This is the point, for example, when dealing with large databases of
documents in web mining tasks. K-means clustering algorithm is one of the best known
clustering methods. It is simple and is often used when other clustering methods are
prohibited due to their computational demands. However, k-means clustering has some
drawbacks. The most important one is the need to estimate the number of clusters in
advance. The original k-means algorithm is also sensitive to the initialization of clusters’



centers and the clusters are sometimes found in areas where no data exist. The solution
is often to start the algorithm several times to find the best parameters. On the other
hand, there is a group of evolutionary heuristic methods for data clustering (genetic,
swarm, immune algorithms). The proposed method belongs to the group of methods
derived from immune systems paradigm, the clonal selection paradigm. It resembles the
original k-means algorithm, but it gets rid of its main drawbacks – it is able to estimate
the proper number of clusters and avoids getting stuck in inappropriate areas. Compared
to other immune algorithms for data clustering, its computational cost is decreased by
producing a limited number of clones and proper suppression mechanisms.

When the cluster centers are properly found, one can use them for the classification
of unknown data samples. A simple and well known method is the k-nearest-neighbor
method (kNN), in which the group of k cluster centers, the closest to the unknown data
sample, decides to which class the sample belongs by a given voting scheme. The class
information in the training data can also be used during the creation of clusters (as in
the LVQ method).

Traditional clustering algorithms find the data distribution in such a way that the
cluster centers are placed in more or less the middle of the data subset, that constitutes
the cluster. When used for classification, these cluster centers are sometimes not the best
ones, especially when the number of clusters is too small. The proposed algorithm based
on the immune clonal selection paradigm aims to evade this obstacle by means of a new
suppression mechanism, which focuses learning on the boundaries among classes and, as
a result, allows evolving additional cluster centers near the class boundaries, which, as
presented in this paper, can lead to better classification results and higher compression
rates.

The rest of the paper is organized as follows. In Section 2 a short description of
the Artificial Immune Systems (AIS) is given. In Section 3 the novel clonal selection
algorithm - Immune K-Means - is described in detail. In Section 4 the primary results
of the proposed method on artificial two-dimensional data and a benchmark machine
learning database (Fisher Iris database) are given and the parameters of the algorithm,
its advantages and limitations are brought up for discussion. Some conclusions are drawn
in Section 5.

2 Artificial Immune Systems

Artificial Immune Systems [4] try to imitate real immune systems. The main task of
an immune system is to defend the organism against pathogens. Different types of cells
cooperate to give a reliable system able to adapt itself efficiently to changing environment.
Most AIS use only the main ideas of real immune systems, namely clonal and negative
selection which deal with the evolution of B- and T-cells, respectively.

2.1 General Concept of Artificial Immune Systems

B-cells with different receptors’ shapes try to bind to antigens (training and testing
data). The best fitted B-cells become stimulated and start to proliferate and produce
clones, which are then mutated at very high rates (somatic hyper-mutation). After this
process is repeated, it is likely that there will emerge a better B-cell (better solution). The
whole process is called the clonal selection. T-cells undergo different type of evolution.



They are created in thymus and learn to recognize none of the self-cells presented to
them. If a T-cell recognizes any of the self-cells it is destroyed in the thymus. The
mature T-lymphocytes do not react to self-cells and thus can protect the organism from
auto-destruction. This evolution is known as a negative selection and it has been used by
several researches for such problems as computer security, novelty or anomaly detection.
These tasks can be considered as two-class discrimination problems. The clonal selection
paradigm has been mainly used for data compression, data and web mining, clustering
and optimization.

In this paper attention is drawn to the clonal selection mechanism. It offers a number
of interesting features from the standpoint of computation. The most important one is
the ability to remember, generalize and classify previously encountered substances. The
adaptive immunological response of the population of B-cells depends on several mech-
anisms such as recognition, stimulation, proliferation, hyper-mutation and suppression.
The recognition of the antigen by a B-cell depends on the level of binding between them.
The level of binding can be simulated by means of a given metric (or more general by
some measure of similarity), for example Euclidean metric, which was also used in this
research. The hipermutation of the offspring of the stimulated cells can be easily done
by random changes in feature vectors describing B-cells. Suppression plays an important
role in the whole process of immunological evolution. It is not fully understood how the
real immune system regulates the population of lymphocytes over the time, however, as
it is pointed out further in the paper, in artificial immune systems the proper suppression
mechanism is crucial in evolving populations that have desirable properties. Carefully
choosing the suppression mechanism one can achieve populations of lymphocytes of dif-
ferent properties.

2.2 Immune Algorithms for Clustering and Classification Problems

In the recent years AIS have been used for different tasks. Some researchers applied
AIS to clustering and visualization tasks. There are many works where negative selec-
tion was applied to two-class discrimination problems, especially in anomaly detection,
computer security etc. [3, 2, 6] where there is an evident problem of self – non-self
discrimination. Different versions of clonal selection algorithm have usually been used
for unsupervised learning. Little research have been conducted on the abilities of AIS
as a supervised learning systems for multiple-class classification, i.e. class information
has seldom been used for evolution of lymphocytes. The work of Watkins [5] is one of
the exceptions. He adopted the algorithm of a resource limited artificial immune system
developed by Timmis [7] and developed a supervised learning algorithm AIRS (Artificial
Immune Recognition System) by adding into the learning procedure class information
as an additional feedback for evolving cells. The method proposed in this paper differs
significantly from the one of Watkins.

3 Immune K-Means – a Novel Clonal Selection Algorithm

A new clonal selection algorithm is proposed. It is a simple but robust clustering algo-
rithm. Two ideas that allow for the control of the number of clusters are the way in
which the clones are generated and the suppression mechanism which removes useless B-
lymphocytes (clusters’ centers). In the proposed method, the clone generating procedure



is a more efficient one when compared to the other methods used in immune algorithms
because in Immune K-Means each lymphocyte produces only one clone (or one for each
class when the class labels are considered during training). By means of different suppres-
sion mechanisms it is possible to evolve lymphocytes with different properties suitable
for different tasks. Two suppression mechanisms are proposed in this section, the first
one for data clustering and the second one for classification.

3.1 Immune K-Means for Data Clustering

The current implementation of the proposed method assumes that both antigens and
B-cells are real valued vectors. The algorithm goes as follows:

1. Generate an initial population of B-cells as a set of random real valued vectors.

2. For each antigen ai (a sample in the training set) find its nearest B-cell.

3. For each B-cell create its clone as a mean vector of all antigens for which a given
B-cell is the nearest neighbor. If a clone is the same as the parent, mutate the clone
by adding to each dimension a random value from range [-mut, mut ]. It allows the
clones to escape from the places where there are no clusters. Add the clones to the
population of B-cells.

4. For each antigen find its new nearest B-cell.

5. Count the stimulation level of each B-cell. The stimulation level for the j-th B-cell
is counted according to the equation (1):

stimulation level(Bj) =
∑

ai:ai∈NN(Bj)

exp−beta∗euc dist(Bj ,ai) (1)

where NN(Bj) is a subset of antigens for which Bj is the nearest neighbor, beta is
a positive constant and euc dist stands for the Euclidean distance.

6. Sort B-cells in a descending order according to their stimulation level.

7. Perform the suppression.

8. Repeat step 3 – 7 until the termination condition is satisfied (in the current imple-
mentation it is a given number of iterations).

The first proposed suppression goes as follows:

Suppression I. Starting from the less stimulated Bj , for each ai ∈ NN(Bj) find Bnew

as ai’s new NN (nearest neighbor) among B-cells (except for the Bj ) and calculate the
distance to Bnew. If a condition (2)

(new dist − old dist) ≤ alpha (2)

is satisfied for each ai ∈ NN(Bj), remove Bj and find a new NN for each ai ∈ NN(Bj).
The values old dist and new dist are the Euclidean distances between the given antigen
ai and B-cells Bj and Bnew, respectively.

The training samples are normalized to the range [0, 1]. The parameters of the
algorithm are easily tuned. As tests showed, the parameter beta does not significantly
influence the evolution and can be set to 1 and thus removed from tuning. The parameter
mut should decrease over the iteration to 0, with a small starting value (like 0.05). The
most important parameter is alpha. It indicates the maximum allowed change in distance



to the NN of each antigen while trying to remove a given B-cell. The initial value of
this parameter should be small (like 0.001), and then, which can be confusing at first, it
should grow over the iterations. The final value depends on the training set and it can
be considered as a density measure of the B-cells’ population. The bigger the final value,
the less B-cells there will be in the final population.

Figure 1 depicts a result of applying the Immune K-Means algorithm to two-dimensional
data. The algorithm is able to learn the structure of data easily.

Figure 1. Immune K-Means algorithm is easily able to evolve a population of B-cells (black
dots) that properly represent the structure of the data (crosses). The starting value of the
parameter alpha was 0.001, the final value was 0.07. The iterations number was set to 25.
There was only one B-cell in the initial population

3.2 Immune K-Means for Classification

Immune K-Means algorithm in the form described in previous section is an unsu-
pervised learning algorithm as it does not use the information of the class labels of the
training samples (antigens). However, it can be used for multiple-class discrimination.
After the unsupervised learning, each lymphocyte is labelled as representing the class,
to which the most of the antigens (training data) belong and for which this lymphocyte
was the nearest neighbor. It is seen easily, that the class information of antigens is not
utilized during the learning process. That fact does not cause any problem, when the
system is trained for data compression and classification is not a main issue. But on
the other hand, if the lymphocytes are to be good classifiers, using class information
during learning seems to be a good idea. For that reason another type of suppression
is proposed. While performing this type of suppression during learning it is necessary
to count the class labels for each lymphocyte everytime when the nearest neighbors are
found for the antigens. Class labels are found for each cell by finding the class that has



the biggest number of representatives among the antigens for which the given B-cell is
the nearest neighbor. The difference is also while creating an offspring of each B-cell:
each cell creates one clone for each class as the mean of antigens (from that class) for
which the given B-cell is the nearest neighbor. The suppression goes as follows:

Suppression II. For each lymphocyte Bj , for each ai ∈ NN(Bj) find its new NN,
Bnew, among B-cells (except for the Bj) and check whether the condition (3)

C(Bj) = C(ai) AND C(Bnew) 6= C(ai) (3)

is satisfied. If the condition (3) is satisfied for at least one ai ∈ Bj , Bj cannot be
removed from the population, otherwise, permanently remove Bj and find a NN for each
ai ∈ Bj . C(Bj) and C(ai) are the class labels of the B-cell and the antigen, respectively.
This mechanism does not allow the removal of B-cells in the situation when at least one
training sample was classified correctly by a given B-cell and it would be misclassified
by another B-cell while trying to remove the first one. A given B-cell Bj is removed
permanently only when its removal does not cause the growth of the total number of
misclassified training samples.

The suppression II utilizes the class information during the learning and thus makes
the Immune K-Means algorithm a supervised learning algorithm. Both variations of
the proposed method share most of the steps. The most important difference is in the
suppression step. Additionally one should easily observe that the parameter alpha does
not play any role while using suppression II and thus it can be eliminated from tuning.
Also, as tests revealed, sorting of B-cells according to their bounding degree seems to
have no influence on the behavior of the algorithm and its final results when suppression
II is used. Sorting is a necessary step while using suppression I, as it leads to an attempt
to remove the B-cells from the edges of data clusters and thus enables the evolution
of cells representing the inner distribution of data. On the contrary, suppression II is
expected to focus the learning on the class discrimination and place the B-cells near
the class boundaries. It is somewhat similar in meaning to the concept of SVM method,
where only some of the training data necessary for learning the class boundaries (so called
support vectors) are considered, while the rest are discarded. Of course, it is possible
to use both types of suppression in the same time, which would result in developing
B-cells of two types: those describing the inner distribution of data and those somewhat
describing the class boundaries.

The proposed algorithm resembles in some parts the well known k-means clustering
algorithm, which is fast and easy to implement. However, in contrast to k-means method,
clonal selection algorithms are able to evolve a proper number of clusters. Combining
these two approaches results in a clustering method that has all the positives and is free
of the limitations. The biggest advantage of the new algorithm is that each B-cell creates
only one clone in each iteration (or one clone for each class). The most important concept
in this novel algorithm are proper suppression mechanisms which are able to decide when
to remove useless (depending on some criterion) B-cells. The concept of the suppression
based on the usefulness of the given cell rather than on the similarity among cells was
adopted. This approach to performing suppression emerged during the development
of the Two-Level AIS [1]. In that system, starting from the worst subpopulation of
lymphocytes, the whole subpopulation was temporarily removed and the system was



evaluated whether there is any loss in the number of recognized antigens by the rest of
subpopulations. If there was no loss, the subpopulation was removed permanently. The
main concept of removing only the cells that are useless for the whole system can be
easily adopted here.

Examples of the results of applying the proposed method to artificial two-dimensional
data and a real world benchmark dataset are presented in the next section.

4 Results of Simulations

In this section some preliminary results for multiple-class classification with Immune K -
Means are given. The influence and meaning of the parameters of the algorithm are also
discussed.

4.1 Two-dimensional Data

Figure 2 shows the results of applying Immune K-Means algorithm for three class
classification problem. Three groups of samples constituting three classes can be seen in
the picture. Three approaches were used: suppression I, suppression II and suppression
I together with suppression II.

Figure 2. Immune K-Means algorithm with different suppression mechanisms. The left picture
shows the results for suppression I, the picture in the middle for suppression II, the rightmost
picture for suppression I & II. Note the additional B-cells (black dots) near the class boundaries
on the rightmost picture as a result of suppression II. The starting value of the parameter alpha

was 0.004, the final value was 0.13. The iterations number was set to 20. There were 5 B-cells
in the initial population

As it can be seen, suppression I can find the data distribution properly when no class
information is provided. When B-cells evolved in that way are used for classification
(after labelling them with class info as it was described earlier), the results achieved
were 96% of correctly classified data. It is obvious that the false classified samples were
those lying near the class boundaries. However, the distribution of data was correctly
discovered. On the other hand, when the suppression II was applied, the B-cells were
created near the boundaries and the classification achieved was 100%. Information on
data distribution is lost, which could be a disadvantage. If both needs have to be satisfied
(data distribution and class boundaries information) both types of the suppression can



be applied, i.e. a given B-cell is removed from the population if, and only if, both
suppression conditions allow it to be removed. The classification was 100% for the third
case, while the inner data distribution was also revealed. The result is shown in the
rightmost picture of Figure 2.

4.2 Results for Fisher’s Iris Database

In this section results for the well known Fisher’s Iris Database are provided. Iris
database is a database of 150 samples of three species of iris flowers, each one described
by four real values. Each class is represented by 50 instances. The proposed algorithm
was evaluated by means of five-fold cross-validation method. The whole dataset was
divided randomly into five parts and each part was used in turn as a testing set while
the rest was used as the training set. The procedure was repeated three times and an
average was counted. In each run the minimum value of alpha was 0.0005, the number
of iterations was set to 30, and the starting size of the population was 20. Parameter k is
the parameter of the kNN classification method. Table 1 shows the best results achieved
for each parameter settings for the training data and Table 2 for the testing data.

Table 1. Results for Iris database. Percentage of correctly classified train data for different
parameter settings.

k alpha max 0.01 0.05 0.1 0.15 0.2 0.22

1 Suppression I 100.0 100.0 98.8 96.7 94.8 90.8
Suppression I & II 100.0 100.0 100.0 100.0 100.0 100.0

3 Suppression I 96.7 96.8 97.3 94.3 89.9 89.8
Suppression I & II 96.4 97.0 97.2 96.7 95.1 95.2

4 Suppression I 96.7 96.2 95.6 91.4 87.4 84.6
Suppression I & II 96.6 96.5 95.4 94.2 92.7 92.3

5 Suppression I 96.9 96.8 96.0 91.1 82.2 79.9
Suppression I & II 97.1 96.8 96.8 95.5 85.4 86.3

6 Suppression I 96.9 96.8 96.3 90.4 78.3 68.2
Suppression I & II 96.9 96.7 95.8 94.5 88.2 82.6

Table 2. Results for Iris database. Percentage of correctly classified test data for different
parameter settings.

k alpha max 0.01 0.05 0.1 0.15 0.2 0.22

1 Suppression I 95.6 95.6 95.1 94.7 93.8 89.8
Suppression I & II 95.8 95.6 95.1 94.9 94.7 94.9

3 Suppression I 96.0 96.0 95.6 93.8 88.7 89.6
Suppression I & II 96.0 95.6 96.0 95.1 94.7 95.3

4 Suppression I 96.0 96.2 95.1 92.2 87.1 83.1
Suppression I & II 96.0 95.1 95.1 94.4 94.2 93.1

5 Suppression I 96.9 96.4 94.4 90.0 85.6 76.7
Suppression I & II 96.4 96.9 95.3 94.4 87.3 83.8

6 Suppression I 96.0 96.0 94.9 92.0 78.2 67.3
Suppression I & II 96.4 96.0 95.3 94.9 86.2 84.0

The best achieved result for test data reported in Table 1 is 96.9%. As the suppression



II, when used alone, does not depend on the value of alpha, it is not mentioned in Table 1
nor Table 2. The best result achieved when the suppression II was used was 95.8% of
correctly classified test data. The results are comparable with the results achieved by
other standard classifiers. Watkins reports 96.7% correctly classified test data for the
algorithm AIRS [8], when testing was performed by means of the same five-fold cross-
validation approach.

Figure 3 and Figure 4 show how the performance of the Immune K-Means algorithm
decreases as the final value of the parameter alpha increases. The increase of the final
value of alpha leads to the decrease in the final population size. As it was mentioned
earlier, alpha is responsible for the density of the lymphocytes’ distribution. The less
lymphocytes there are in the population, the worse the classification performance is,
especially when k increases in the kNN classification method. As it can be expected, when
both types of suppression are used, the decrease in the performance is less significant, as
the additional B-cells exist nearby the class boundaries. It is obvious that using bigger
values of k in kNN method leads to worse results when there are few cluster centers. As a
result, even while using both types of suppression, performance decreases significantly for
big values of k. Figure 5 shows how the percentage of recognized test data depends on the
value of k when only the second type of suppression is used. In that case, the parameter
alpha does not have any influence on the evolving B-cells. As Figure 2 suggested, in
the case of suppression II, the use of big values of k should lead to worse results, as the
B-cells are located close to the boundaries. This is also the point when the algorithm is
tested on Iris database, which can be seen in Figure 5. The best choice for k while using
the suppression II is k = 1.

It can be observed that the results for suppression II are a little worse than when both
suppressions (or only suppression I) with the proper value of alpha are used. However,
there is one more thing to discuss at this point. Figure 6 shows how the population
size depends on the final value of alpha. For small values of alpha, the population size
is big – 110 B-cells in the final population results in a small compression rate, as the
training dataset size was 120 (in each run of the five-fold cross-validation the size of
the training dataset is 4*30=120). The population size decreases when the final alpha

increases, however, it leads to the decrease in the performance, too. For bigger values of
alpha, the result of applying suppression II together with suppression I can be seen, as
the population size is bigger because the additional B-cells are created. When only the
suppression II is used, the final population size does not depend on the value of alpha

and its average value was 9 – 10 B-cells which gives significantly better compression of
information. The same population size, when only the suppression I is used, is achieved
for value of alpha of more or less 0.22. However, it can be seen that the performance of
such a population is definitely worse than when the suppression II is used. It shows that
suppression II is able to evolve B-cells that are more dedicated to classification especially
when bigger compression rates are required. On the other hand, the B-cells evolved by
suppression II seems to be over-trained, which can be seen from Table 1 and Table 2 – the
percentage of recognized training antigens is always 100% while using k = 1. This shows
that suppression II can lead to B-cells with less generalization abilities than suppression
I. However, the difference in population size (for similar classification performance) while
using these different suppression types can be significant. The computations are also
much faster when only the suppression II is used.



Figure 3. Percentage of recognized test data for different values of k (suppression I). Results
for Iris database.

Figure 4. Percentage of recognized test data for different values of k (suppression I & II).
Results for Iris database.



Figure 5. Percentage of recognized test data (suppression II). Results for Iris database.

Figure 6. Dependence of the population size on the final value of alpha.



5 Conclusion

The proposed Immune K-Means algorithm is a new, promising approach to data cluster-
ing and classification. It is easy but robust. It has a small number of parameters, that
have clear interpretations, they are easily tuned and their impact on the performance
of the algorithm is easily predictable. The proposed method is less computationally de-
manding than other immunological algorithms (like AIRS [8]) as there are less clones
produced by the B-cells in each iterations. Selecting different types of suppression can
lead to significantly different results, to populations that have different properties desir-
able in different applications. In this paper two suppression mechanisms were presented,
one for efficient data clustering and data distribution learning, the second one well suited
for discovering the class boundaries. It was shown how the different types of suppression
used in the same time lead to better classification results. The possible improvement of
the generalization abilities of evolved B-cells will be studied in the future.
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