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Poland, email: {M.Witczak,J.Korbicz}@issi.uz.zgora.pl

Abstract. Challenging and complex design problems arise regularly in modern
fault diagnosis systems. Unfortunately, the classical analytical techniques cannot
often provide acceptable solutions to such difficult tasks. This explains why soft
computing techniques such as evolutionary algorithms are becoming more and
more popular in industrial applications of fault diagnosis. The main objective of
this paper is to present recent developments regarding the application of evolu-
tionary algorithms in fault diagnosis. The main attention is on the techniques that
integrate the classical and evolutionary approaches. A selected example, dealing
with the DAMADICS benchmark, is carefully described in the paper.

1 Introduction

A continuous increase in the complexity, efficiency, and reliability of modern industrial
systems necessities a continuous development in the control and fault diagnosis [12] the-
ory and practice. These requirements extend beyond normally accepted safety-critical
systems of nuclear reactors, chemical plants or aircraft, to new systems such as au-
tonomous vehicles or fast rail systems. An early detection and maintenance of faults can
help avoid the system shut-down, breakdown and even catastrophes involving human
fatalities and material damage. The role of the fault diagnosis system is to monitor the
behaviour of the system and to provide all possible information regarding the abnormal
functioning of its components. As a result, the overall task of fault diagnosis consists
of the three subtasks: fault detection, fault isolation, and fault identification [5]. The
knowledge resulting from these steps is then provided to the controller re-design part,
which is responsible for changing the control law in such a way as to maintain required
system performance.

There is no doubt that the theory (and practice, as a consequence) of fault diag-
nosis and control is well-developed and mature for linear systems only [5, 12]. There
is also a number of different approaches that can be employed to settle the robustness
problems regarding model uncertainty [5, 12]. In spite of the fact that a large spectrum
of analytical techniques for Fault Detection and Isolation (FDI) of non-linear systems
can be found in the literature [5, 12], they all usually suffer from the lack of an appro-
priate mathematical description of the system being considered. If there is no, or not
sufficiently accurate analytical models, then the one feasible way is to use the so-called
soft computing techniques [12]. A large amount of knowledge on using these techniques



for model-based fault diagnosis has been accumulated through the literature since the
beginning of the 1990s (see, e.g., [5, 9, 12, 20, 24] and the references therein).

The paper is organised as follows: Section I is devoted to a bibliographical review of
the application of evolutionary algorithms in fault diagnosis. Sections III and IV present
the genetic programming-based techniques that can be used for designing observers and
state-space models for non-linear systems. The presented approaches are illustrated with
the results concerning the DAMADICS benchmark [4]. The final section summarises and
concludes the paper.

2 Evolutionary algorithms in FDI

Evolutionary algorithms have been the subject of a large number of papers [1]. Gener-
ally, there is a large number of different kinds of EAs and the most popular of them are:
genetic algorithms (GAs) [11], genetic programming (GP) [14], evolutionary program-
ming [8], evolutionary strategies [17], and evolutionary search with soft selection [10].

Although the origins of evolutionary algorithms can be traced back to the late 1950’s
(see [1] for a comprehensive introduction and survey on EAs), the first works on evolution-
ary algorithms in control engineering were published at the beginning of the 1990’s. In
2002, Fleming and Purshouse [7] tackled a challenging task of preparing a comprehensive
survey on the application of evolutionary algorithms in control engineering. As indicated
in [7], there are relatively few publications on applications of evolutionary algorithms to
the design of FDI systems.

In this paper, rather than providing an exhaustive survey on evolutionary algorithms
in fault diagnosis it is aimed at providing a comprehensive account of the published
work that exploits the special nature of EAs. This means that the works dealing with
EAs applied as alternative optimisers, e.g. for training neural and/or fuzzy systems are
not included. In other words, the main objective is to extend the material of [7] by
introducing the latest advances in fault diagnosis with evolutionary algorithms.

Irrespective of the identification method selected for designing the model, there al-
ways exists the problem of model uncertainty, i.e. the model-reality mismatch. To
overcome this problem, many approaches have been proposed [5, 12]. Undoubtedly, the
most common approach is to use robust observers, such as the Unknown Input Observer
(UIO) [5, 12, 24], which can tolerate a degree of model uncertainty and hence increase
the reliability of fault diagnosis. In such an approach, the model-reality mismatch can be
represented by the so-called unknown input. Hence, the state estimate, and consequently,
the output estimate is obtained taking into account model uncertainty. Unfortunately,
when the direction of faults is similar to that of an unknown input, then the unknown
input decoupling procedure may impair the fault sensitivity considerably. In order to
settle this problem, Chen et al. [2] (see also [5]) formulated an observer-based FDI as
a multiobjective optimisation problem, in which the task was to maximise the effect of
faults on the residual, whilst minimising the effect of an unknown input. The approach
was applied to the detection of sensor faults in a flight control system. A similar ap-
proach was proposed by Kowalczuk et al. [13], where the observer design is based on a
Pareto-based approach, in which the ranking of an individual solution is based on the
number of solutions by which it is dominated. These two solutions can be applied for
linear systems only. In spite of the fact that a large amount of knowledge on design-
ing observers for non-linear systems has been accumulated through the literature since



the beginning of the 1970s, a customary approach is to linearize the non-linear model
around the current state estimate, and then to apply techniques for linear systems, as
is the case for the extended Kalman filter [12]. Unfortunately, this strategy works well
only when the linearization does not cause a large mismatch between the linear model
and non-linear behavior. To improve the effectiveness of state estimation, it is necessary
to restrict the class of non-linear systems while designing observers. Unfortunately, the
analytical design procedures resulting from such an approach are usually very complex,
even for simple laboratory systems [26]. To overcome this problem, Porter and Passino
proposed the so-called genetic adaptive observer [19]. They showed how to construct
such an observer where a genetic algorithm evolves the gain matrix of the observer in
real-time so that the output error is minimized. Apart from the relatively simple design
procedure, the authors did not provide the convergence conditions of the observer. They
also did not consider the robustness issues with respect to model uncertainty. A solution
that does not posses such drawbacks was proposed by Witczak et al. [23]. In particular,
the authors showed the convergence condition of the observer and proposed a technique
for increasing its convergence rate with genetic programming. This approach will be
detailed in Section 2.2 It should be strongly underlined that, the application of observers
is limited by the need for non-linear state-space models of the system being considered,
which is usually a serious problem in complex industrial systems. This explains why most
of the examples considered in the literature are devoted to simulated or laboratory sys-
tems, e.g. the celebrated three- (two- or even four-) tank system, an inverted pendulum,
a travelling crane, etc. To tackle this problem the genetic programming-based approach
for designing state-space models from input-output data was developed in [23, 24]. This
approach will be detailed in Section 2.1 A further development of this technique related
with the input-output models was proposed in [16]. Evolutionary algorithms have also
been applied to FDI methods that are not based on the concept of residuals. Marcu [15]
formulated the FDI design as a feature selection and classifier design problem. EA
has also been applied to the generalised task of determining the fault from a collection
symptoms [18]. The method relied upon the availability of a priori probabilities that
a particular fault caused a particular symptom. In [3], the authors employed genetic
algorithm-based evolutionary strategy for fault diagnosis-related classification problems,
which includes two aspects: evolutionary selection of the training samples and input
features, and evolutionary construction of the neural network classifier. Finally, Sun et

al. [21] used the bootstrap technique to preprocess the operational data acquired from a
running diesel engine and the genetic programming approach to find the best compound
feature that can discriminate among the four kinds of commonly operating modes of the
engine.

2.1 System identification for FDI

Let us consider the following class of non-linear discrete-time systems:

xk+1 = g (xk,uk,p) + wk, (1)

yk+1 = Ck+1xk+1 + vk. (2)

where p ∈ R
np is the parameter vector, xk ∈ R

n is the state vector, uk ∈ R
r is the

input vector, yk ∈ R
m is the output vector, g (·) is a non-linear function, wk ∈ R

n and
vk ∈ R

m are the process and measurement noise, respectively. With a slight abuse of



notation the parameter vector will be neglected in the model equations. Assume that
the function g (·) has the form

g (xk,uk) = A(xk)xk + h(uk). (3)

where h(·) is a non-linear function, and A(·) is a matrix of functions.
The state-space model of the system (1)-(2) can be expressed as

x̂k+1 = A(x̂k)x̂k + h(uk), (4)

ŷk+1 = Ck+1x̂k+1. (5)

where x̂k+1 ∈ R
n and ŷk+1 ∈ R

m stand for the state and output estimate, respectively.
The problem is to determine A(·), Ck+1 and h(·), given a set of input-output mea-
surements {(uk,yk)}nt−1

k=0
. Moreover, it is assumed that the true state vector xk is, in

particular, unknown. Without loss of generality, it is possible to assume that

A(x̂k) = diag[a1,1(x̂k), . . . , an,n(x̂k)]. (6)

Thus, the problem reduces to identifying ai,i(x̂k), hi(uk), i = 1, . . . , n, and Ck+1, i.e.
to obtain A(·) and h(·). Assuming that |ai,i(x̂k)| < 1, i = 1, . . . , n it can be shown [23]
that the model (4)-(5) is globally asymptotically stable [23]. This implies that ai,i(x̂k)
should have the following structure

ai,i(x̂k) = tanh(si,i(x̂k)), i = 1, . . . , n, (7)

where tanh(·) is a hyperbolic tangent function, and si,i(x̂k) is a function to be determined.
Undoubtedly, many tools can be employed to obtain (4)-(5), e.g. neural networks or

Genetic Programming (GP) [14]. The main advantage of GP over neural networks is
that the models resulting from this approach are less sophisticated (from the point of
view of the number of parameters).

Since si,i(x̂k), hi(uk), i = 1, . . . , n are assumed to be non-linear (in general) functions
they can easily be represented as trees. The language of the trees in GP is formed by
a user-defined function F set and terminal T set, which form the nodes of the trees. In
the case of a parameterized tree, the terminal set is composed of variables only. Such
a parameterization has proven to be especially useful for a model designing purpose [23,
24, 25]. On the other hand, it leads to the problem of non-linear parameter estimation
which has to be solved by some non-linear programming tools, e.g. the Adaptive Random
Search (ARS) algorithm [22].

As a result of applying the above approach to the identification of (1)-(2), each entry of
A(x̂k) and h(uk) can be obtained with a population of trees evolved by the GP algorithm.
It should be pointed out that for that particular purpose the two terminal sets can be
distinguished, i.e. first for A(x̂k) (T = {x̂k}) and second for h(uk) (T = {uk}).

As can be observed, parameter estimation involves computation of Ck, which is nec-
essary to obtain the output error εk and, consequently, the value of the fitness function.
To tackle this problem, for each trial point p it is necessary to first set an initial state
estimate x̂0, and then to obtain the state estimate x̂k, k = 1, . . . , nt − 1. Knowing the
state estimate and using the least-square method, it is possible to obtain Ck (assuming
Ck = C) by solving the following equation:

C

nt−1∑

k=0

x̂kx̂
T
k =

nt−1∑

k=0

ykx̂
T
k , (8)



It should be also pointed out that the order n of the model is in general unknown and
hence should be determined throughout experiments.

2.2 Observer design with genetic programming

Let us consider a class of non-linear system described by the following equations

xk+1 = g (xk) + h(uk + L1,kfk) + Ekdk, (9)

yk+1 = Ck+1xk+1 + L2,k+1fk+1, (10)

where g (xk) is assumed to be continuously differentiable with respect to xk, fk ∈ R
s

stands for the fault signal, dk ∈ R
q is the unknown input, and L1,k, L2,k, Ek are their

distribution matrices. Similarly to the Extended Kalman Filter [12], the UIO presented
in [5, pp.98-108] can be extended to the class of non-linear systems (9)-(10). This leads
to the following structure of the Extended UIO (EUIO):

x̂k+1/k = g (x̂k) + h(uk), (11)

x̂k+1 = x̂k+1/k + Hk+1εk+1/k + K1,k+1εk, (12)

and
εk+1/k = yk − Ck+1x̂k+1/k, εk = yk − Ckx̂k, (13)

where the way of calculating the gain K1,k+1 and unknown input decoupling Hk+1

matrices is given in [23, 24, 25]. The main objective of is to show that the convergence
of the EUIO strongly depends on the appropriate choice of the instrumental matrices
Rk and Qk (measurement and process noise covariance matrices in the stochastic case).
Thus, the problem is to obtain an appropriate form of the instrumental matrices Qk−1

and Rk in such a way as to ensure the convergence of the observer.
For that purpose Witczak et al. (2002) performed a comprehensive convergence analysis
with the Lyapunov method. Unfortunately, an analytical derivation of the matrices
Qk−1 and Rk is an extremely difficult problem. To tackle this, a compromise between
the convergence and the convergence rate should be established. As shown in [23, 24, 25],
such a compromise can be attained as follows:

Qk−1 = q2(εk−1)I + δ1I, Rk = r2(εk)I + δ2I, (14)

where q(εk−1) and r(εk) are non-linear functions of the output error εk (the squares are
used to ensure the positive definiteness of Qk−1 and Rk). Thus, the problem reduces to
identifying the above functions. In particular, in [23] it is shown how to reduce the task
of designing of Qk−1 and Rk to the multi-objective and global structure optimization
problem of q(εk−1) and r(εk). In particular, genetic programming is utilized [23, 24, 25]
to tackle this problem.

2.3 An illustrative example – DAMADICS benchmark

The DAMADICS (Development and Application of Methods for Actuator Diagnosis

in Industrial Control Systems) [4] project was focused on the diagnosis of valve (cf.
Fig. 1) plant actuators and looked towards real implementation methods for new actuator
systems. As can be seen in Fig. 1, the following process variables can be measured:



uk = (CV,P1, P2, T1) and yk = (F,X) where CV is the control signal, P1 is the
pressure at the inlet of the valve, P2 is the pressure at the outlet of the valve, T1 is the
juice temperature at the inlet of the valve, X is the servomotor rod displacement, F is
the juice flow at the outlet of the valve. In Fig. 1, three additional bypass valves (denoted
by z1, z2, and z3) can be seen. The state of these valves can be controlled manually by
the operator. They are introduced for manual process operation, actuator maintenance
and safety purposes.

The objective of this section is to design the state-space model of the actuator being
considered (cf. Fig. 1) according to the approach described in Section 2.1. The terminal
set used during the identification process was F = {+, ∗, /}. After the 50 runs of the GP
algorithm performed for each model order, n = 2, . . . , 8, it was found that the order of the
model which provides the best approximation quality is n = 2. The mean-squared output
error for the obtained model was 0.0079 (the model structure can be found in [25]).

Since the state-space model is given, then it is possible to design the EUIO presented
in Section 2.2 To tackle the determination of the unknown input distribution matrix Ek

the approach proposed in [25] was employed, then the approach of Section III along with
the threshold selector described in [25] were used for fault detection. Since the method
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Figure 1. Actuator scheme (left) and the residual r1,k for the flow sensor fault.

of designing an appropriate threshold is known, it is possible to check the fault detection
capabilities of the presented observer-based fault detection scheme. Fig. 1 presents results
of fault detection for the flow sensor fault (with a small magnitude). As can be observed,
the fault can be detected with the use of the juice flow residual, r1,k = y1,k − ŷ1,k. A
complete report regarding fault diagnosis of the DAMADICS benchmark can be found
in [25].

3 Conclusions

The main objective of this paper was to summarize the advances in the interesting
research area concerning application of evolutionary algorithms to fault diagnosis. Rather
than providing an exhaustive survey it was aimed at providing a comprehensive account of
the published work that exploits the special nature of these techniques. Special attention



was paid to the techniques that integrate the classical and soft computing approaches in
such a way to tackle the inevitable non-linearity and robustness problems. In particular,
it was shown that the integration of genetic programming and unknown input observer
results in a hybrid fault diagnosis technique that is superior over the classical one. The
presented technique was illustrated with the DAMADICS benchmark.
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[1] Bäck T., Hammel U., and Schwefel H.P. (1997): Evolutionary computation: com-

ments on the history and current state. — IEEE Trans. Evolutionary Computation,
Vol. 1, No. 1, pp. 3–17

[2] Chen J., Patton R. J., and Liu G.P. (1996): Optimal residual design for fault diag-

nosis using multi-objective optimization and genetic algorithms. – Int. J. Syst. Sci.,
Vol. 27, No. 6, pp. 567-576.

[3] Chen Z., He Y., Chu F., and Huang J. (2003): Evolutionary strategy for classifi-

cation problems andits application in fault diagnosis. – Engineering Applications of
Artificial Intelligence, Vol. 16, No. 1, pp. 31–38.

[4] DAMADICS (2004): Website of DAMADICS : Development and Application of

Methods for Actuator Diagnosis in Industrial Control Systems. http://diag.mchtr.
pw.edu.pl/damadics/.

[5] Chen J., and Patton R. J. (1999): Robust Model-based Fault Diagnosis for Dynamic

Systems. — London: Kluwer Academic Publishers

[6] Chryssolouris G., Lee M., and Ramsey A. (1996): Confidence interval prediction for

neural network models. – IEEE Trans. Neural Networks, Vol.7, No.1, pp.229–232.

[7] Fleming P.J., and Purshouse (2002): Evolutionary algorithms in control systems

engineering: a survey. – Control Eng. Practice, Vol. 10, No. 11, pp. 1223–1241.

[8] Fogel, L.J., Owens, A.J., and Walsh, M.J. (1999): An overview of evolutionary

programming. – In: Evolutionary Algorithms (De Jong K., Vose M.D. and Whitley
L.D., Eds.) (Heidelberg: Springer-Verlag).
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