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Abstract. The paper deals with the optimization and identification of hybrid
fibre-reinforced laminates. Two tasks are considered: i) the ply orientations op-
timization, ii) the material constants identification. Different optimization and
identification criteria connected with the modal analysis are considered. The evo-
lutionary algorithm is used as the optimization and identification method. In
order to accelerate the calculations, the distributed version of the evolutionary
algorithm is employed. Finite element method software is used to solve the direct
problem for the laminates. Numerical examples of optimization and identification
are attached.

1 Introduction

Composites are materials which play a significant role in modern industry. They are
constructed by joining two or more materials together if the union is at the macroscopic
level. They usually consist of two phases: the matrix and the reinforcement. The com-
posites that are especially popular are the group of composites that are fibre-reinforced
and made of many layers (laminas, plies) ones, called laminates. The laminas are as-
sumed to be joined permanently. The fibres are typically situated directionally in each
ply of the laminate. In the one-directional laminates the direction of the fibres in plies
is the same. In multidirectional laminates the direction of the fibres in plies is different.

There are two main reasons for the popularity of laminates:
1. The high weight-strength ratio in comparison with the conventional materials.
2. The ease with which the material properties can be tailored to requirements by

manipulating the laminate parameters such as: components materials, stacking
sequence, fibre orientations and layer thicknesses.

In the most practical laminate applications only the fibre directions in plies and ply
thicknesses are different - the material remains the same. Unfortunately, the cost of
laminates rapidly increases with their strength. To avoid this inconvenience, laminates
can be composed of more than one material. Hybrid laminates usually consist of two
materials: the core layers are built of a weaker and less expensive material and the
external layers are made of a high-stiffness and more expensive material. This attitude
ensures the high efficiency of the laminate reducing its total cost [3].



Composites are generally anisotropic materials. Multilayered laminates can be usually
treated as orthotropic materials. If the plies are distributed symmetrically to the mid-
plane, the laminate is called symmetrical. The single ply of the laminate, assuming
the plane-stress state, has 4 independent material constants [10]: axial and transverse
Young’s module (E1, E2), axial-transverse shear modulus (G12) and axial-transverse
Poisson ratio (ν12).

The aim of the present paper is the optimization and the identification of laminate
structures. The optimization is performed to achieve the desired properties of the ma-
terial manipulating the ply orientations. The identification goal is to determine elastic
constants of the laminates as well as material densities. The symmetric, hybrid fibre-
reinforced laminates are considered. The dynamic behavior of the structures is considered
and the modal analysis is employed to obtain data for both tasks. The continuous and
discreet versions of the optimization tasks are considered.

To solve the optimization and the identification tasks the evolutionary algorithm is
used as the global optimization procedure. To decrease the computation time, the dis-
tributed version of the evolutionary algorithm is employed. The finite element method
software package is used to solve the direct problem for the laminate plates. The numer-
ical examples are attached.

2 Modal Analysis of Hybrid Laminates

Dynamic properties of the structure can be determined by means of modal analysis both
theoretically and experimentally [13]. Theoretical analysis is usually performed by means
of the numerical methods, especially the finite element method. Experiments consist in
the excitation of the real structure and measurements of the response (displacements,
velocities or accelerations at the sensor points) characterizing dynamical behavior of the
structure.

The eigenfrequency problem for plates can be presented in the general form:
(
K− ω2M

)
u = 0 (1)

where: K - stiffness matrix; M - mass matrix; u - eigenfunction (displacement vector)
corresponding to the eigenvalue ω.

For a rectangular hybrid laminate plate of length a, width b and thickness h in
directions x, y and z, respectively, the previous equation has the form [4]:

ρhω2w = D11w,xxxx + D16w,xxxy + 2(D12 + 2D16)w,xxyy + 4D26w,xyyy + D22w,yyyy (2)

where: w - deflection in the z direction, Dij - bending stiffness, ρ - mass density.
The relatively small data set of eigenvalues can result in equivocal results of identifi-

cation. To get more data having a small set (typically one) of sensor points the frequency
response analysis can be used. Accelerometers are especially convenient because: i) they
have relatively small mass compared to displacement and velocity sensors; ii) it is possible
to obtain velocity and displacement signals by the integration of accelerations signal.

The dynamic equilibrium equations for a structure subjected to harmonic excitation
has the form:

Ku + Cu̇ + Mü = P sin ωt (3)



where: C - damping matrix, P - excitation force vector, t - time, ω - frequency,
u̇ - velocity vector, ü - acceleration vector.

3 Optimization Task

The objective of the optimization task is to find the optimal set of ply angles for given
criteria connected with the eigenfrequencies. To achieve that, the objective function
J0(x), where x is a vector of the design variables, is maximized:

max : J0(x) (4)

The ply orientations are typically restricted to a small set of discrete angles (0◦, +45◦,
-45◦, 90◦) due to the manufacturing process. There exist tow placements machines able
to produce laminate with arbitrary ply angles, but they are expensive and not popular.
To take the foregoing fact into consideration discrete as well as continuous variants of
the optimization tasks are examined.

The number and thicknesses of the laminas of a hybrid laminate are assumed constant.
The symmetric, fibre-reinforced hybrid laminates made of two materials are examined.
The plies orientations (angles) are the design variables. Due to the symmetry, the number
of design variables is a half of the plies number.

The x vector has the form:

x = (ϕ1, ϕ2, ..., ϕi, ..., ϕn) (5)

where: ϕi - i-ply orientation angle; n - a half of the plies number.
The dynamic characteristics analysis of the structure by means of the modal analysis is

employed to solve the considered laminate’s optimization task. Two typical optimization
criteria connected with the free vibrations of structures are considered:

1. The maximization of the distance between two first eigenfrequencies:

max : [J0(x) = ω2(x)− ω1(x)] (6)

2. The maximization of the minimum distance between the external excitation fre-
quency ωex and the eigenfrequency ωi:

max : [J0 = min (|ωi(x)− ωex(x)|)] (7)

4 Identification Task

The objective of the identification task is to find the material constants in a multilayered,
hybrid, fibre-reinforced laminate. Due to the fact, that the laminates are anisotropic
materials, it is often necessary to identify the elastic properties of the designed ele-
ment. Laminate structures are frequently manufactured as the unique ones, so the
non-destructive tests have to be performed [8]. The identification task belongs to in-
verse problems, where unknowns (material properties, geometry, boundary conditions
etc.) are recognized on the basis of the responses to given excitations measured on its
boundary [5]. Indirect identification methods, usually based on the numerical and mixed



numerical-experimental methods are intensively developed [11]. Identification problems
are the ill-posed ones and the identification results can be ambiguous if there is insufficient
measurement data.

The problem of the elastic constants identification for multi-layered laminates made
of one material was previously solved successfully by authors [7]. The static data (dis-
placements at sensor points) as well as the modal analysis data (eigenfrequencies and
frequency response in one sensor point) were used for identification.

Identification can be treated as the minimization of the objective function J0 with
respect to the vector of the design variables x:

min :

[
J0(x) =

N∑

i=1

∣∣∣∣
q̂i − qi

q̂i

∣∣∣∣
]

(8)

where: x = (xi) - the parameters representing the identified constants; q̂i - measured
values of a state fields; qi - values of the same state fields calculated from the solution
of the boundary-value problem.

The numbers of layers, their thicknesses and fibre orientation are assumed to be
known. It is assumed that external layers of the laminate are made of material 1 and
the core layers are made of material 2 and the number of layers made of each material is
known. The x vector has the form (with superscripts specifying the material number):

x =
(
E1

1 , E1
2 , G1

12, ν
1
12, ρ

1, E2
1 , E2

2 , G2
12, ν

2
12, ρ

2
)

(9)

The direct problems for optimization as well as for the identification tasks are solved
by means of a professional finite element method software package (MSC.PATRAN/
NASTRAN) with laminate modeler [1].

5 Distributed Evolutionary Algorithm

In order to identify the material constants and achieve desired properties of laminates,
optimization methods are applied.

In the present paper the evolutionary algorithm (EA) is employed to solve both tasks.
EA is especially useful in two cases: i) if gradient methods fail due to the fact that the
information about the objective function gradient is hard or impossible to obtain; ii) if
objective function is multimodal, which usually leads the gradient methods to the local
optima. The only information the EA needs to work is the objective (fitness) function
value [6].

Considered optimization and identification tasks are usually multimodal ones. In
addition, the ply angles in the presented optimization task are typically restricted to a
relatively small set of discrete angles because of manufacturing limitations.

One of the disadvantages of the EA is time-consuming computation. This fact is
especially noticeable in engineering problems, in which the solving of the direct problem
is the most expensive part of calculations. To reduce this inconvenience the distributed
EA (DEA) is exploited [9]. The total population of chromosomes is divided into two or
more subpopulations. Subpopulations evolve nearly independently. Information between
subpopulations is interchanged during a migration phase. Due to the fact, that sending
chromosomes to processors is managed by a special process, the number of processing



units can in total be up to the number of chromosomes. The block diagram of the
evolutionary algorithm (for one subpopulation) is presented in Figure 1.

Figure 1. The block diagram of the DEA - one subpopulation.

6 Numerical examples

A rectangular, symmetric, hybrid laminate plate is examined (Figure 2).
The external plies of the laminate are made of material M1, the core plies are made of

the material M2. The material properties [12] are collected in Table 1. The plate FEM
model is divided into 200 4-node elements of type QUAD4. The genes (design variables)
are the floating-point numbers in continuous cases and the whole numbers in the discrete
cases. The population of chromosomes is divided into 2 supbopulations in each case.
Rank selection with elitism is used as the selection method.

Figure 2. The hybrid laminate plate: a) dimensions and bearing; b) location of materials and
symmetry plane (10 plies).



Table 1. The laminate materials - parameters.

Material E1 [GPa] E2 [GPa] G12 GPa] ν12 ρ [kg/m3]

M1(graphite-epoxy T300/5280) 181 10.3 7.17 0.28 1600

M2 (glass-epoxy, Scotchply 1002 38.6 8.27 4.14 0.26 1800

6.1 Optimization of the Laminate

Two optimization cases are considered: 10-plies and 20-plies. To compare the results
the thicknesses of the parts made of particular materials are the same in both cases
(so the total thicknesses of laminates are the same as well). The continuous and three
discrete variants are taken into account. In the continuous variant each ply can vary
continuously in the range [-90◦, 90◦]. In the discreet variants each ply angle can vary in
the range [-90◦, 90◦] taking values every 5◦, 15◦ and 45◦. Two optimization criteria: (6)
and (7) are applied. The initial stacking sequences for 10-plies and 20-plies laminates
are: (0/15/-15/45/-45)s and (0/0/15/15/-15/-5/45/45/-45/-45)s, respectively. The first
5 eigenfrequencies of the plates are calculated by the FEM software and presented in
Table 2.

Table 2. The initial laminate plate - the values of the first 5 eigenfrequencies.

ω1 [Hz] ω2 [Hz] ω3 [Hz] ω4 [Hz] ω5 [Hz]

99.7316 252.9872 582.1273 622.4944 909.4683

The remaining parameters of the DEA are:
i) chromosomes in each subpopulation Ne = 20;
ii) evolutionary operators: simple crossover pc = 0.9, uniform mutation pmu = 0.1 and
Gaussian mutation pmg = 1/(individual length).

The results for the maximization of the distance between the first and the second
eigenfrequencies are collected in Table 3.

Table 3. The optimization results - 1st criterion.

Variant Plies Stacking sequence ω1, ω2 [Hz] ω2−ω1 [Hz]

initial 10 (0/15/-15/45/-45)s 99.732, 252.987 153.2556
20 (0/0/15/15/-15/-15/45/45/-45/-45)s 99.732, 252.987 153.2556

conti- 10 (35.87/-31.52/-32.13/-32.16/31.97)s 60.538, 342.667 282.1298
nuous 20 (34.05/-37.12/-31.35/-19.54/31.87/

27.65/58.04/-34.19/-22.97/-61.09)s
67.109, 408.484 341.3746

5◦ 10 (35/-35/30/-30/-30)s 61.048, 342.868 281.8201
20 (35/-35/-30/25/30/35/-30/55/35/30)s 67.334, 408.931 341.5970

15◦ 10 (30/-45/-30/-30/30)s 64.696, 340.285 275.5891
20 (30/-30/45/-45/45/-45/-45/45/-45/-45/)s 71.076, 398.048 326.9711

45◦ 10 (45/-45/0/0/0)s 51.825, 310.238 258.4137
20 (45/-45/0/0/0/0/0/0/0/0)s 61.922, 380.129 318.2076

For the second criterion it was assumed, that the excitation frequency is constant
and equals ωex=120Hz. The distance to the closest eigenfrequency is maximized. The
optimization results are collected in Table 4.



Table 4. The optimization results - 2ndcriterion.

Variant Plies Stacking sequence ω1, ω2 [Hz] min(|ωi-ωex|)
[Hz]

initial 10 ((0/15/-15/45/-45)s 99.732, 252.987 20.268
20 (0/0/15/15/-15/-15/45/45/-45/-45)s 99.732, 252.987 20.268

conti- 10 (76.87/88.87/61.13/6.11/61.30)s 33.126, 206.874 86.874
nuous 20 (80.42/-76.28/61.97/87.51/-48.12

/71.62/12.09/53.8/85.88/45.63)s
33.127, 206.875 86.873

5◦ 10 (90/60/-45/50/90)s 33.155, 207.095 86.845
20 (-80/90/65/55/65/25/-65/-85/85/15)s 33.120, 206.880 86.880

15◦ 10 ((-75/90/-60/15/-15)s 33.260, 207.019 86.739
20 (90/75/45/90/60/-60/-45/90/-30/90/)s 33.188, 207.031 86.815

45◦ 10 (90/-45/90/45/90)s 33.639, 206.624 86.3612
20 (90/90/90/45/45/45/90/90/90/90)s 33.198, 207.350 86.802

6.2 Identification of the Laminate

The plate was excited in the right-upper corner by the sinusoidal signal. The frequency
of the excitation varied from 100Hz to 20000Hz with a step of 100Hz. 200 samples of
the acceleration amplitudes at one sensor point situated in the right-lower corner of the
plate were measured.

The remaining parameters of the DEA are:
i) chromosomes in each subpopulation Ne = 50;
ii) evolutionary operators: simple crossover pc = 1.0 and Gaussian mutation pmg =
1/(individual length).

The number of plies, ply thicknesses and fibre direction in each ply are assumed to be
known. The identification was performed for 20-plies, symmetric laminate of the stacking
sequence: (0/0/15/15/-15/-5/45/45/-45/-45)s.

The identification results are collected in Table 5. Frequency response diagram is
presented in Figure 3.

Table 5. The identification results.

Identified constant

Material E1 [GPa] E1 [GPa] G12 [GPa] ν12 [GPa] ρ12 [kg/m3]

exact value 181.00 10.30 7.17 0.280 1600.0
M1 (outer) found value 183.81 10.35 7.63 0.2683 1896.4

error [%] 1.55 0.44 6.42 4.18 18.53

exact value 38.60 8.27 4.14 0.26 1800.0
M2 (inner) found value 34.96 8.65 3.93 0.231 1725.32

error [%] 9.44 4.61 5.04 11.38 4.15

6.3 Computing Speed-Up

The computation speedup obtained by a dual-core processor was investigated. The
speedup of computation s can be expressed as the time necessary to solve a problem on



Figure 3. Accelerations at the sensor point - the frequency response.

one processing unit t1 over a solution time on n processing units tn:

s =
t1
tn

(10)

The identification of material constants in hybrid laminate was used as a benchmark
problem. The tests were performed using the DPEA algorithm.

The dual-core Intel Pentium D830 processor was employed. Intel dual-core processors
have two complete processor cores in one physical package running at the same frequency.
The cores share the same interface with chipset and memory, but each core has its own
set of registers and cache [2].

The average fitness function evaluation time using one core was about one second.
The 1.7 speedup was obtained during the tests. The speedup is lower than linear because
it is restricted by the common, single processors interface to the memory.

7 Final Conclusions

Hybrid laminates, being not as popular as the laminates with laminas made of the same
composite, ensure high efficiency with a lower cost of the laminate. The stacking sequence
optimization gives the possibility to obtain the required properties of the laminate for
given criteria. Non-destructive methods of the identification of the material constants in
laminates are especially important due to their frequent unitary production.

Coupling the finite element method with the evolutionary algorithm gives interesting
alternative for traditional optimization and identification methods, especially for discrete
and multimodal problems, encountered in the considered issues.

The modal analysis has been employed for both tasks. The distance between two
consecutive eigenfrequencies as well as the gap between the excitation frequency and
the nearest eigenfrequency were significantly enlarged. The frequency response analysis
gives large amount of measurements in a small number (only one in the present case) of



sensor points. The identification results are not quite precise, but promising. Coupling
frequency response with the eigenfrequency data would improve the identification results,
and wil be tested in further research.

For the real problems the computation of the fitness function by means of the finite
element method is the most time-consuming part of calculations. It can be significantly
reduced by means of the distributed EA.
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