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Abstract. Learning classifier systems (LCSs) are rule-based learning machines in which a
reinforcement learning is conducted with use of evolutionary techniques. Currently, they
are a subject of intensive study and of interesting applications. In this paper we present a
review of LCSs. We give a short history of LCSs and overview current models. We also
present some interesting and successful applications of LCSs.

1 Introduction

In machine learning, the machine is a software system running on a computer, while learning is
analogous to the human learning behavior. The behavior is a product of an interaction between
an agent and its environment, where the agent is some entity that can perform actions. The
environment provides a positive or negative reward for received action.

The Learning Classifier System (LCS) is a rule-based learning machine introduced by John
Holland [33,34] in the 1970s. This technique combines a reinforcement learning and
evolutionary computing to produce adaptive systems. The LCS is the system that learns a
syntactically simple string rules (called classifiers). Each classifier consists of two parts:
<condition>:<action>. This rule means: “if a current observed state of the environment matches
the condition, then execute the action”. In most LCSs, classifier conditions have simple
representation as strings in the ternary alphabet {0,1,#} while classifier actions are binary strings.
Classifiers interacting with the environment receive real-value rewards and their fitness is
updated. The idea of the LCS is presented in Figure 1. We can see three main components of
LCS. The performance component governs an interaction with an environment. The
reinforcement component (called credit assignment component) distributes the reward received
from the environment to the classifiers. The discovery component is responsible for discovering
better rules. The rules are discovered with the use of Genetic Algorithm (GA). The GA operates
on a population of classifiers.

We can distinguish some types of LCSs: a Michigan-style, in which classifier system evolves
a single population of rules and GA recombines and reproduces usually a very small number of
the best rules in a rule set; a Pittsburgh-style, where classifier system evolves a population of
rule sets, and GA acts on rule sets, and anticipatory LCS with anticipatory learning process.
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Figure 1. Idea of the LCS.

The rules are evaluated with a reinforcement learning algorithm (a credit assignment
algorithm). In earlier LCSs a bucket brigade algorithm [34] was used for this purpose, where
strength of rules was assigned according to the payoff prediction. The GA task is to discover new
and potentially better rules. The GA uses a measure, calculated by the credit assignment
algorithm, as the fitness of each rule. Currently Q-Learning algorithms are used (first in [76]) for
this purpose.

The environments that LCS has to learn within are divided into two classes: a single-step and
a multi-step. In single-step environments an environmental feedback is returned on each step of
the LCS. The second class contains environments where a feedback is given after some number
steps. The single-step problems are simpler for implementation and easier to learn, because each
of actions is estimated. In contrast, the multi-step environment requires a chain of actions before
a feedback is received.

The multi-step LCSs are applied in Markov and non-Markov (or partially observable)
environments. The distinction between a Markov and a non-Markov environment is fundamental
in reinforcement learning and it shows a separation between the LCSs and other learning systems
which use traditional reinforcement learning algorithms. In the Markovian environment an agent
learns rely on its sensors completely, while, in the non-Markovian environment, the agent needs
additional memory of previous experience. First reports indicated unsatisfactory performance of
traditional classifier system [60] when performing in the non-Markovian environments.

In 1989 Wilson and Goldberg presented a critical review of LCS research [74]. They
summarized existing research results and suggested directions to development. They showed
interesting applications of LCSs of the time (e.g. autonomous robotics, medical data analysis,
agents environments). In [47] Lanzi and Riolo summarized the applications of LCSs in the next
ten years.

The paper is organized as follows. Section 2 briefly overviews LCSs. In Section 3 we present
a short description of one of most popular LCSs. Section 4 presents some interesting applications
of LCSs. The last section contains conclusions.

2 Metamorphosis of LCS

In 1988 Riolo’s CFS-C implementation appeared [54]. At that time, a Goldberg’s standard
implementation was made available [30]. Both implementations were based on the original



architecture proposed by Holland [34] and used (a) a bucket brigade algorithm to distribute a
reward received to the classifiers, (b) strength parameter of classifier, (c) an internal message list.
Small modifications to the original framework were also proposed. Wilson introduced classifier
system BOOLE [73] which solves a multiplexer problem and showed that it learns faster than
neural networks. Then Bonelli [8] made changes in the performance of BOOLE and showed that
his new classifier system NEWBOOLE is faster.

In 1989 Booker introduced a new type classifier system, GOFER-1, which has the property of
anticipation [10]. In Booker’s classifier system GA works in environmental niches and classifiers
fitness is a function of both reward and other information. GOFER-1 was applied to a
multiplexer problem and Booker obtained very good results.

In 1994 Wilson [75] simplified the original architecture of the LCS. He showed Zeroth-level
Classifier System (ZCS) which has no internal message list and the reward is distributed to
classifiers by QBB [75], a technique similar to Watkins’ Q-learning [72] — a feature of both
bucket brigade and Q-learning. The ZCS was modified slightly, and as an example of such a
modification can serve the Dorigo’s AlecSys classifier system [22]. However, first experiments
showed that ZCS performance is not optimal [75]. Adding internal memory to the ZCS [83]
improved the performance of system in the multi-step environments.

In 1995 Wilson made a breakthrough in LCS. He introduced the eXtended Classifier System
(XCS) [76]. The architectures of XCS differs from all the previous architectures. The most
important difference between XCS and other LCS is that classifier fitness for the GA is based on
the accuracy of prediction of reward (e.g. in ZCS the rule fitness is based on a payoff received by
classifier). The goal of the XCS is to form a complete and accurate mapping of the problem
space through efficient generalizations [77]. The XCS uses standard Q-learning algorithm [72].
GA acts in environmental niches. To select parents in the GA, traditional roulette wheel [72] or
tournament selection [16] are used.

Wilson introduced a version of XCS adjusted for continuously-valued inputs (called XCSR),
in opposite to the binary values which were used in traditional systems [78]. The XCSR has
modified representation of conditions (real values) and mechanisms of mutation and covering.
Similarly, Wilson showed the XCS modified for integer values of inputs (called XCSI) [80].
Lanzi introduced other modifications of classifier’s condition. Firstly, he proposed a LCS in
which conditions were not of the same length (the classifier system called XCSm) [45] and
secondly, a condition was based on S-expressions (the system called XCSL) [46]. Lanzi
performed tests showing that these two systems reach optimal solutions. Tharakunnel and
Goldberg [64] modified the prediction parameter of the XCS (they called it an Average Reward
XCS - AXCS). They showed that this system learns similarly to the XCS in a multi-step
environment.

There exist well-known works which blend features of fuzzy logic with classifier system
(Fuzzy Learning Classifier Systems - FLCS) [69,7]. In these hybrid systems fuzzy rules are
derived from human experts as linguistic if-then rules or are automatically generated from
numerical data without domain experts.

Cliff and Ross applied ZCS with internal memory (ZCSM) [83] to solve problems in non-
Markovian environments. They showed that ZCSM can solve these problems when the size of
internal states is limited and they observed that when the size of internal memory grows then
learning becomes unstable. The XCS can learn an optimal policy in Markovian environments
where an optimal action is always determined solely by the state of current sensory inputs.
However, when the XCS wants to solve a problem in non-Markovian environments, then it needs



some memory mechanism too. The XCSM by Lanzi introduced a constant length of bit-register
memory into general classifier system structure to record agent’s experience [42]. Lanzi and
Wilson showed that XCSM can learn optimal solutions in more difficult non-Markovian
environments [43]. However, it turned out that in some situations the memory mechanism
becomes useless. In [44] Lanzi introduced an extension to XCSM (called XCSMH) which is
capable of learning an optimal policy in much more difficult partially observable environments.

There were proposed another mechanisms instead of the internal memory. Barry’s idea
consists in updating classifier prediction parameter if an action has caused a change in the inputs
[4,5]. Tomlinson and Bull used corporations of classifiers, first, to ZCS [66], and then to XCS
[67].

In 1997 Stolzmann [62] developed the Anticipatory Classifier System (ACS) inspired by a
theory of Tolman [65]. The ACS combines the LCS framework with a representation of
anticipations and anticipatory learning process. Classifiers within ACS are augmented with a
further element in the form of a condition but specifying the form of the anticipated next input
after the action is performed. The original structure of ACS did not include any generalization
mechanism. In 2000 the mechanism of generalization was included [12,13]. Furthermore,
different ACS applications were published (more information in [14]). The ACS has also
different modifications, e.g. ACS2 [15], XACS [15], YACS [26], MACS [27].

Wilson [79,81] introduced a classifier system called XCSF, in which the prediction
estimation mechanism is used to learn an approximation to functions. This system can be used in
the learning of any function or mapping from a vector of input values to output values. Later, the
XCSF was extended to XCS-LP [82] for single-step problems defined over continuous domains
involving discrete actions. Next, XCSF was applied to tackle multi-step problems involving
continuous inputs [48].

Llora et al. [52] showed how accurate and maximally general classifiers can be evolved in
Pittsburgh-style classifier system. They used the compact genetic algorithm (cGA) [32] and they
introduced a Compact Classifier System (CCS) based on an estimation of distribution algorithm.
Other LCSs with Pittsburgh-style approach have been also proposed. These are GABIL [19],
GIL, COGIN, REGAL [28], GA-Miner, GALE [49], MOLCS-GA [51] or Gassist [2].

3 Short overview of XCS

XCS developed by Wilson [76] is currently one of the most popular LCSs. Classifiers of XCS
have three parameters: prediction, prediction error and fitness (see, an example in Figure 2).
These parameters are updated by Q-learning technique. XCS consists of classifiers sets: a
population set [P] of all classifiers, a match set [M] containing classifiers from the population
whose condition part matches the current input, and an action set [A] — the set of classifiers
which actions will be sent to an environment (see, Figure 3).

}] 1#1 :/O %5 5 E{f) 9 EK
corf(ﬁm * \ }ness

. prediction .
action prediction error

Figure 2. An example of a classifier of XCS.



At each time step the system receives a message from the environment. The system compares
this message with conditions of classifiers from population [P] and creates a match set [M]. If the
[M] is empty a new classifier is created through covering mechanism. Then for each possible
action q; the system prediction P(a;) is computed and prediction array P(A) is created. The value
P(a;) gives an evaluation of the expected reward if action q; is performed. Then, action selection
is performed. The classifiers in [M] (which propose a selected action) are placed in the action set
[A]. The selected action is executed and an immediate reward is returned to the system. The
reward is used to update the parameters of the classifiers in [A]. GA in XCS is applied to [A].
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Figure 3. Schematic diagram of XCS for a single-step problem.

4 Applications of LCSs

In the following section we present an overview of some interesting applications of LCSs. First
LCSs were used to test capabilities of learning processes and for simple problems in a single- and
multi-step environments. A multiplexer problem (for single-step) and a maze (for multi-step)
were favorite environments for tests of the LCSs.

4.1 Data mining

The LCSs were applied successfully to data mining problems. Holmes adjusted the LCS (called
EpiCS) for solving epidemiological surveillance [35]. In particular, the EpiCS was applied to the
problem of the head injuries of children involved in automobile crashes [36]. Holmes also
performed its tests in EpiXCS (see [37]). Wilson applied the XCSI to the Winconsin Breast
Cancer Database [80]. Llora built the GALE (Genetic and Artificial Life Environment) system
for knowledge discovery in epidemiologic databases [50]. 2003 Bagnall et al. [3] used the LCS
for the Forest Cover Data Set and they compared the process of learning of the LCS with other
learning techniques (e.g. neural networks). Dam et al. introduced an extension of XCS for
distributed data mining (DXCS) [84]. More information about the discovery of patterns within
data can be found in [6].



4.2 Control

Booker used a LCS to control a simulated creature in a simple two-dimensional environment [9].
Goldberg demonstrated the application to the control of gas flow through a national pipeline
system [29]. Vergas et al. used the LCS to the on-line reconfiguration of electric power
distribution networks [70]. Cao et al. [18], Sha'aban et al. [59] and Bull et al. [11] used the LCS
to an adaptive traffic control problem. The Fuzzy LCS have been successfully applied to various
control problems [7,38,17] too.

4.3 Autonomous robotics and agents

Another area of applications of LCS is autonomous robotics. A lot of research concerning the
animation of virtual entities was done. This is a very important field for experimentation with
LCSs. The models use the LCS to build the dynamical behavior of agents. Many people
applied different version of LCSs for this problem. The results of their works can be found in
many of Dorigo’s and Colombetti’s papers (for example [23]), in works from Donnart’s and
Meyer’s (e.g. [20]). Vasilyev used the LCS for autonomous agent control tasks. He links the
classifier system with artificial neural networks (ANN) (e.g. [71]). Dorigo and Sirtori have
developed a robot path planning system utilizing many classifier systems simultaneously [21].
Roberts applied classifier systems for learning in dynamic planning problems, such as
determining plans of movement through artificial environments in search of food [55]. Donnart
and Meyer developed a hierarchical architecture called MonaLysa for controlling autonomous
agents [20]. This system links a module of classifier system with a set of other modules (e.g.
place recognition module, planning module). Sanza et al. [56] applied LCSs for learning of
agents in virtual soccer. Katagami and Yamada [39] introduced Interactive Classifier System
(ICS) which was applied to create a mobile robot. They showed that a robot is able to learn
rules quickly and a human operator can easily teach a physical robot [40,41]. Sato and Kanno
showed the application of hybrid systems to the acquisition of decision-making algorithms for
agents in online soccer games [57]. Carse and Pipe used Fuzzy LCS in tests in a real robot
environment [17]. Sen et al. [58] studied multi-agent system coordination with LCS. The
policy mapping of actions from perceptions to actions were used by multiple agents to learn
coordination strategies without relying on shared information. They obtained results which
indicated that classifier systems can be more effective than the more widely used Q-learning
scheme for multi-agent coordination.

4.4 Other applications

Many other applications classifier systems exist. Swartz used Riolo's CFS-C [54] with little
modifications to parse English text [63]. Richards applied the LCS to two- and three-dimensional
shape optimization [53]. Federman et al. applied classifier system to predict the next note of
music [24]. The LCSs were used for recognition problems, e.g. a letter recognition problem [25]
or patterns recognition in language grammar [68]. Smith et al. [61] showed that the LCSs can be
used to discover a novel fighter is maneuvering strategies. Guessoum et al. [31] used the XCS to
build adaptive agents to simulate economic models. Afanasyeva [1] showed that classifier
systems can be used for solving such well-known statistic problems as classification and that this
approach can be a good alternative to existing classification methods (e.g. a discriminant analysis
or neural networks).



5 Conclusion

Learning classifier systems are a way of using GA to machine learning problems. Classifier
systems have been applied in many different areas. In particular one should not forget their
contribution to research into adaptive systems. However, there are a lot of difficulties with the
representation of knowledge and rate of learning which are a subject for current research.
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