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1 Introduction

The immune system of mammals includes a set of defence mechanisms, and among them
a primary and a secondary immune responses are the most sophisticated. The primary
one is responsible for recognition and destruction of intruders called pathogens which
appeared in the organism for the first time. The recognition of pathogens of a previously
unknown type is based on a quick adaptation of the system to a new type of patterns. In
the case of detection of pathogens recognized as dangerous for the mammal the immune
system has to build new detectors which will be able to find and eliminate intruders as
soon as possible. The secondary response is based on memory and the ability to remember
previously recognized pathogens and this way it reacts much faster than the primary one.
Both mechanisms complement each other making an efficient tool for recognition and for
the elimination of the different microbes, viruses, etc.

The process of adaptation of cells of the immune system (i.e. white blood cells called
lymphocytes) to the new patterns is called clonal selection, and it is based on the reaction
of the lymphocytes which are generated in the bone marrow (thus called B-cells) to the
matching pathogens [10]. The B-cell matches the pathogens with its receptors called
antibodies. On the surface of the B-cell there are hundreds of thousands of such receptors.
When an intruder appears in the organism, detectors of the system (and among them
B-cells) are stimulated to defence. Those cells which match the pathogens bind to them
and eliminate them from the organism. The B-cells which are the most complementary
to the matched pathogens are activated i.e. they are cloned and undergo hypermutation
to create new receptors better able to match the pathogens. This way they explore the
space of pattern shapes. The number of clones is directly proportional to the B-cell
matching specificity while the strength of mutation is inversely proportional.

The clonal selection paradigm briefly described above was an inspiration for a set of
heuristic approaches to optimization since the end of 90’s [10]. Adaptation of the pattern
recognition mechanizm to optimization task is simple. Instead of an explicit population
of antigens to be recognized an evaluation function is used to evaluate antigens’ matching
specificity. The better fitness value is assigned to the antigen, the higher is its matching.
The remaining rules of the iterated algorithms stay unchanged. There is a reference set of
antibodies called population. Antibodies with high matching are activated i.e. generate



clones. The clones undergo mutation. After mutation those clones where fitness is better
than their predecessors, enter the reference set and the process continues.

In our research we investigate the use of the clonal selection principle based approaches
for non-stationary optimization tasks. Selected approaches proved to be efficient in sta-
tionary optimization however it is interesting what efficiency could be expected in case
of non-stationary one. We did our tests using two known test-case generators.

2 Compared algorithms

In this paper we study properties of four algorithms based on the clonal selection princi-
ple: Artificial Immune Iterated Algorithm (AIIA) [9], two versions of B-Cell Algorithm
(BCA) [6] and a Simple Artificial Immune System (Sais) [5]. All of them implement
non-deterministic iterated process of search and all of them work with a population of
solutions called antibodies or B-cells. Antibodies represent candidate solutions to the
problem, i.e. vectors of coordinates of points in an n-dimensional real valued search
space. Entries of the vectors can be coded as bit strings or stored as real values. Every
algorithm starts with a population of randomly generated solutions from the search space
and performs the process of iterated improvement of the solutions by the execution of
the main loop of the algorithm.

We also assume that the optimization system ”knows” when its environment has
changed. However none of the algorithms starts from scratch but each reevaluates its
population of solutions and continues the search process.

2.1 Artificial Immune Iterated Algorithm (AIIA)

The detailed description of AIIA can be found in [9]. The pseudo-code of the main
loop of AIIA is given in Figure 1. The symbol xi represents i-th antibody, xci(k) – k-th
mutated clone of the i-th antibody, f(xi) – fitness to the antigen of the i-th antibody,
and xc∗i is the best mutated clone of the i-th antibody, i.e. f(xc∗i ) ≥ f(xci(k)),

∨
k ∈

{1, . . . c} where c is the number of clones.

1. Fitness evaluation. For each antibody xi in the population P
compute its fitness i.e. the value of the objective function f(xi).

2. Clonal selection. Choose n antibodies with highest fitness to the antigen.
3. Somatic hypermutation.

Make c mutated clones xcj for each antibody xj , j ∈ {1, . . . n}.
The mutated clone xc∗j with highest fitness replaces the original
antibody if f(xc∗j ) > f(xj).

4. Apoptosis. Replace d weakest antibodies by randomly generated solutions.

Figure 1. Pseudo-code of the main loop of AIIA

AIIA has five control parameters: |P | – population size, n – size of the subpopulation
activated for clonal selection procedure, c – number of mutated clones of the antibody (in
general the number of clones for each of activated antibodies could be different. However
in experiments presented below we simplified this rule and the number of clones of each



antibody was the same), d – size of the subpopulation that undergo apoptosis procedure,
and rm – mutation range.

The solutions are represented as real valued vectors. Applied mutation operator
originates from [4] where it was a component of aiNet optimization algorithm. Mutation
of an i-th coordinate of a clone xc is performed as follows:

xc′i = xci + αN(0, 1),

α = (rm/β) · (domain width/2) · exp(−f ′(x)).

where: xci – current value of the i-th coordinate of the solution xc, xc′i – new value of
the i-th coordinate, N(0, 1) – Gaussian random variable of zero mean and σ = 1, rm –
mutation range (0 < rm ≤ 1), β – a weight factor which is set to 1 for all experiments,
and f ′(x) is the fitness of a clone’s predecessor x normalized in an interval [0,1] as follows:

f ′(x) =
f(x) − fmin

(fmax − fmin)
,

fmax ≥ f(xk),
∨

k ∈ {1, . . . |P |} and fmin ≤ f(xk),
∨

k ∈ {1, . . . |P |}.

2.2 A Simple Artificial Immune System (SAIS)

Outline of the Sais algorithm implemented for our experiments comes from [5]. The
pseudo-code of the main loop of Sais is given in Figure 2.

1. Fitness evaluation. For each antibody xi in the population P compute
its exogenic activation i.e. the value of the objective function f(xi).

2. Copy the antibodies from P into two reference sets: Pex (i.e. a set
of n antibodies with highest fitness value) and Pen (all the left antibodies
not present in Pex). For all the antibodies in Pen compute the endogenic
activation.

3. Clonal selection and somatic hypermutation.
3.1 Make c mutated clones xcj for each antibody xj from Pex, j ∈ {1, . . . n}.
The mutated clone xc∗j with highest fitness replaces the original
antibody in Pex if f(xc∗j ) > f(xj).
3.2 Do selection and replication of antibodies in Pen.

4. Recruitment. A new population P is created as a result of tournament
selection between current P and both Pex and Pen .

Figure 2. Pseudo-code of the main loop of Sais

Sais has four control parameters: |P | – population size, n – number of exo-activated
B-cells, c – number of mutated clones of i-th B-cell and rm – mutation range.

In our implementation of Sais, solutions are represented as real valued vectors unlike
the original version described in [5]. Thus it was necessary to do some adaptations in the
algorithm. We needed especially to redefine the mutation operator (which was the same
as for AIIA) and specify the rules of selection and replication applied to the population
of endo-activated B-cells.

The proces of management of exo-activated antibodies is clearly described in the
Figure 2. However some additional explanations are needed for understanding the process



of management of endo-activated individuals. The level of endo-activation of a B-cell is
evaluated as follows:

ien = 1/nP − di + 1,

where: nP – number of different B-cells in the population; di – density of an i-th B-cell
(a parameter assigned to each B-cell and evaluated every iteration).

The endo-activation level ien depends on the density of i-th B-cell xi. This density is
proportional to the number of other B-cells located not farther than k from xi, where k is
an experimentally tuned parameter. In the course of clonal selection and somatic hyper-

mutation a set of clones is generated from Pen with a tournament selection scheme. The
clones do not undergo any mutation in this step and completely replace the population
Pen. In the step of recruitment a new population P is created with tournament selection:
antibodies from Pex compete with their parents from P and respectively antibodies from
Pen also compete with their parents.

2.3 B-Cell Algorithm (BCA)

Our version of the BCA algorithm originates from [6]. The pseudo-code of the main
loop of BCA is given in Figure 3.

1. For each B-Cell xi in the population P compute its fitness i.e. the value
of the objective function f(xi).

2. For each B-Cell xi do
2.1 Make c mutated clones xci and place in clonal pool.
2.2 Randomize one clone in the clonal pool.
2.3 Apply contiguous mutation to all the remaining clones.
2.4 For each clone in the clonal pool compute its fitness.
2.5 The mutated clone xc∗i with highest fitness replaces the original

B-Cell if f(xc∗i ) > f(xi).

Figure 3. Pseudo-code of the main loop of BCA

The algorithm has three control parameters: |P | – population size, c – number of
clones in the clonal pool, and nb – number of bits for each of the coordinates because a
binary representation of solution is applied here. Two versions of BCA with two types of
binary coding were tested in our experiments: a 32-bit pure binary coding and a 64-bit
double precision floating point coding (according to IEEE 754 standard). Contiguous
mutation was implemented as described in [6] and applied to both versions.

3 How to compare the algorithms

Because of different rules of population management in the tested algorithms it was
impossible to compare them just by setting the same values of common parameters.
Instead, according to suggestions in [1] we decided to consider the algorithms as compa-
rable when the number of fitness function evaluations between subsequent changes in the
environment is similar for each of the algorithms. For comparisons with results published
by other authors the number of evaluations equals approx. 5000. In our experiments
we varied some of algorithms’ parameters, however for each of parameters’ settings the



constraint on maximum number of iterations was always satisfied. Full list of values of
algorithms’ fixed and tuned parameters is given in Table 1.

Table 1. Full list of values of algorithms’ fixed and tuned parameters

Algorithm fixed parameters tuned parameters

AIIA |P | = 50, d = 30 n, c, rm

Sais |P | = 50, k = 0.05 · (domain width) n, c, rm

BCA nb = 32, 64 |P |, c

4 Plan of experiments and applied measures

Behavior of the algorithms was tested with six environments generated with two test-
benchmarks. The first test-benchmark is a Test Case Generator (or TCG) proposed in
[8]1. We created four testing environments with TCG; two of them with cyclic changes
and two with non-cyclic ones. In case of cyclic changes a single run includes 5 cycles
of changes in the environment. In case of non-cyclic environments the total number
of changes for each of them was 25. The second test-benchmark is a Moving Peaks
Benchmark (or MPB) generator [2, 7]. Its description, sample parameters settings and a
source code are available at the web page [1]. We created two testing environments with
MPB called scenario 1 and 2 [1]. A six groups of experiments were performed: two of
them with cyclically changing environments and four others with non-cyclically changing
environments. Table 2 shows the settings of each of the groups.

Table 2. Parameters of groups of experiments with cyclically changing environments, i.e.
TCG10c and TCG20c and with non-cyclically ones, i.e. TCG12nc , TCG20nc, MPB5 and MPB50

Environment TCG10c TCG20c TCG12nc TCG20nc MPB5 MPB50

No. of iterations 1000 2000 500 500 500 500

Environment type 10×10 10×10 6×6 10×10 1 2

No. of varying optima 10 20 12 20 5 50

The first row called Environment shows the identifier of the testing environment. No.

of iterations shows the number of iterations of the search process performed in a single
experiment, i.e. in one run of the optimization algorithm. In case of cyclic changes this
number is equal to: number of cycles of changes multiplied by the number of changes in
a cycle (i.e. no. of varying optima) and by the number of iterations between changes, For
example, for environment TCG10c it is: 5×10×20. Environment type shows the size of
the environment generated with TCG (i.e. the number of subspaces in the search space)

1Figures of sample environments generated with TCG are available at: http://www.ipipan.waw.pl/
∼stw/ais/environment/env.html



or the number of scenario in case of MPB. No. of varying optima shows the number of
varying hills, peaks or cones.

To evaluate the results, we used a measure called offline error which represents the
average deviation of the best individual from the optimum evaluated since the last change
of the fitness landscape. Every time the solution’s fitness is evaluated, an auxiliary
variable is increased by the value which is the deviation of actually evaluated solution if
the fitness is better than any other since the last change or the deviation of the best one
since the last change otherwise. When the experiment is finished the sum in the variable
is divided by the total number of evaluation and returned as the offline error. Every
experiment was repeated 100 times and the mean is presented in the Figures.

5 Results of experiments

Figure 4 presents results of tuning for BCA with both types of coding, Figure 5 – for
AIIA, and Figure 6 – for Sais.
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Figure 4. Offline error obtained during experiments with BCA with pure binary coding (BCAbc)
and with double precision floating point coding (BCAfpc) for six testing environments. X axis
represents population size
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Figure 5. Offline error obtained during experiments with AIIA: mutation range vs. number of
activated antibodies

For easier comparison of efficiency of tested algorithms we present Table 3 where the
best mean values of offline error obtained during experiments are presented.

6 Results summary and conclusions

In spite of the fact that all the algorithms originate from the same clonal selection
principle the results of tuning show presence of differences in the properties of the three
algorithms. In case of cyclic changes (environments TCG10c and TCG20c) for AIIA
the number of activated antibodies (n) should be rather small for better performance
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Figure 6. Offline error obtained during experiments with Sais with double precision floating
point representation of solution coordinates: mutation range vs. number of activated antibodies

(admittedly for TCG10c the best result was obtained for n = 20 and rm = 0.05, whereas
the second best was for n = 4 and rm = 0.35; for TCG20c – the best result was obtained
for n = 7 and rm = 0.21). For Sais the rule is not so clear because for TCG10c the
best result was obtained for n = 7 and rm = 0.39, but for TCG20c – the best result
was obtained for n = 14 and rm = 0.23. For BCAfpc the optimal number of activated
antibodies for all the testing environments is rather big (the best values are obtained for
small population sizes) or represents even the maximal possible size in some cases.

The mutation range plays significant role in all the algorithms. It should be tuned
respectively to the number and width of changing hills in the landscape for cyclic changes



Table 3. Best values of offline error obtained by the algorithms

Environment TCG10c TCG20c TCG12nc TCG20nc MPB5 MPB50

AIIA 2.83 3.45 2.62 5.32 4.29 5.60

Sais 3.24 4.03 2.45 6.32 13.31 12.07

BCAbc 25.13 40.99 39.74 40.07 60.39 46.74

BCAfpc 9.63 11.36 4.55 10.17 14.65 13.72

and for non-cyclic changes as well. For both algorithms with real valued representation
of solution coordinates the best results for cyclic changes were obtained when mutation
range rm was between 0.2 and 0.4. The two environments with non-cyclic changes based
on TCG also required mutation range of similar values for AIIA (best results obtained
for rm = 0.25 in case of TCG12nc and for rm = 0.31 in case of TCG20nc) but much
wider mutation range for Sais (rm = 0.83 for both environments). The situation is just
opposite in case of the two environments based on MPB. The requested mutation range
should be very small (for AIIA: rm = 0.05 and rm = 0.03 respectively and for Sais:
rm = 0.07 for both environments). It is interesting that in case of Sais there are two
optimal configurations of parameters settings for MPB50. One of them is with rm = 0.07
and another one – with rm = 0.95 both with small number of activated antibodies and
large number of clones.

The best performance was achieved by the AIIA algorithm which returned the smallest
value of the offline error for all the tested environments except one, i.e. the TCG12nc test
case where it was minimally outperformed by Sais. The worst results with non-stationary
optimization were obtained by BCA, however the results obtained with an original 64-
bit double precision floating point coding were much better than those obtained with a
32-bit pure binary coding.

Finally it is worth noting that the outcome of the clonal selection based approaches is
comparable with the results obtained by other evolutionary approaches even supported
by mechanisms dedicated for non-stationary optimization, like random immigrants or
hypermutation, as well as by multi-objective optimization methods (for comparison see
e.g. the best value of offline error obtained for MPB50 in [3]: the best value equals 8.87.
For traditional GA – 11.05. In our experiments presented in Table 3 above the AIIA
algorithm reached 5.60). This encourages us to study properties of other clonal selection
based algorithms not mentioned in this paper. A subject of our further research could
be searching for those common properties which are the most responsible for effective
optimization in non-stationary optimization tasks.
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