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Abstract. This paper presents a formal model of multi-robot interactions based
on dynamic game theory. The application of dynamic game theory involves a
sequential decision process evolving in (continuous or discrete) time with more
than one decision maker (in our case autonomous robot), one or more performance
criteria (cost functionals), and possibly having access to different information. The
whole range of robot control problems arising from different levels of “cooperation”
between robots can be precisely described using different branches of game theory.
If the robots have a common goal and one performance objective they act as a
team, then team theory is relevant. A noncooperative game refers to the case in
which robots have different goals and independent performance objectives. Also
another very important issue in action planning i.e. interaction with unknown or
partially unknown environment can be viewed as a game against nature.

1 Introduction

A multi-robot system involves a group of robots working in the same workspace. The use
of multi-robot systems can enhance the utilization of robots, may increase the robustness
of the system by taking advantage of parallelism and redundancy, and improve the versa-
tility in handling different applications. Sometimes cooperation between multiple robots
is an essential requirement for the successful completion of the task. Many other reasons
for using multiple robots have been given in the literature e.g. [2, 11, 14]. However, the
use of multiple robot systems is not without its challenges. One of the ultimate goals is
to develop control strategies for multiple robots sharing the same space or working as a
team. To solve this problem a research effort is needed to develop methods and algorit-
hms to enable reliable, safe, and cooperative operation of free ranging autonomous robots
performing tasks in dynamic semi-structured or unstructured (physical) environments.
There are many approaches to coordination of multiple robots that range from hierar-

chical planning solutions, in which a central coordinator designates tasks for individual
robots [9,14], to purely reactive groups in which there is no central unit and cooperation
is inherent in the implemented rules that control the robots [2,11]. In general, approaches
to multiple robot control can be categorized into two groups: centralized and decoupled
strategies. The centralized approach consists of treating all the robots as if they were

∗

This work was supported by the Polish Ministry of Science and Information Technology grant: 4T11A

003 25



one composite robot with several body elements that are not necessarily connected to
each other. The centralized planning has the advantage that it allows for complete plan-
ners, which are guaranteed to find a solution whenever one exists. A main drawback to
this approach is that it often leads to exploring large-dimensional space, which may be
computationally very expensive.
A decoupled approach consists of planning activity for each robot individually while

ignoring the existence of the other robots, and then considering the interactions between
the robots. However, the decoupled techniques are not complete, for example, they may
fail to find the solution if one exists. Of course, it is impossible to ensure optimal activity
when all decisions are to be made locally. The suitability of one approach over the other
is determined by the trade-off between computational complexity associated with a given
problem, and the amount of completeness that is lost.
Game theory ideas can be useful as a powerful mathematical framework for both

the development and analysis of multi-robot coordination algorithms [7]. Using game
theory one can model different aspects of multi-robot systems, such as an amount and
type of cooperation between robots, one or more performance criteria, uncertainty in
environment sensing and state predictability. However, game theory is rather rarely used
to model real multi-robot problems, in part due to its high computational complexity
[7,13]. In [5] partially observable stochastic games are used as a model for decentralized
robot teams. The proposed algorithm transforms the original problem into a sequence
of smaller Bayesian games that are computationally tractable. The application of non-
cooperative game equilibria to the design of a collision free movement of a team of
mobile robots in a dynamic environment is proposed in [12]. In [9] a cooperative game
is formulated for two robots manipulating a single object to distribute generalized force,
and the objective of the game is to minimize the worst case interaction force between
robots and object.
In general, one can distinguish the following types of multi-robot systems: cooperative

systems, competitive systems, adversarial systems (e.g., pursuit/evasion systems). In
our concept, the degree of ”cooperation” between robots (agents) becomes an important
factor for determining which branch of game theory should be used (Fig. 1).
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Figure 1. Game corresponding to the degree of robot cooperation.

A clear distinction exists between two-player zero-sum games and the rest [1]. A
zero-sum game might be used to describe the situation, in which two players (in our
case robots or robot teams) have totally opposite goals i.e. no cooperation between the
players is allowed.
A noncooperative game refers to the case in which robots have different goals and

independent performance measures [1,8]. Without cooperation the robots choose actions



that take into account interests that conflict with the other robots.

If the robots act in unison but each has different decision objective, the multiple
objective optimization problem is obtained [4]. A situation in which some part of the
players wish to act in unison (i.e. they cooperate), in order to obtain a mutually beneficial
outcome, can be described as a cooperative game [10]. This case can be referred to as
loosely cooperating robots.

If all robots have a common goal and one performance objective, and they act as a
team or even a single mechanism, then team theory or optimal control theory can be
applied to solve the problem [14,16]. In this situation we have tightly cooperating robots.

Also another very important issue in multi-robot systems i.e., interaction with un-
known or partially unknown environment can be viewed as a game against nature. In
the real world, robots must always deal with uncertainty.

Dynamic games require an unambiguous and strict mathematical description of the
problem to be solved. The class of related dynamic games problems that can be sol-
ved directly is fairly restrictive. As the models of the multi-robot system become more
realistic the solution of the mathematical problem involved becomes more and more dif-
ficult, time consuming and expensive. One promising way to overcome this problem is
based on combining Artificial Intelligence (AI) or especially Distributed Artificial Inte-
lligence (DAI) i.e., multi-agent models and techniques with concepts of Dynamic Game
Theory [3]. It seems to be a promising direction because the representation of a multi-
ple robots coordination problem (essentially a multi-stage decision making process) by
a decision tree is equivalent to a game in extensive form [1]. The pruning of such a
tree is one of the basic tasks of heuristic search techniques used in most AI algorithms.
Those techniques provide a way of solving real-life problems for which no more direct
approach is available. Using AI techniques for the analysis of multi-robot systems allows
a qualitative description of the problem, which is extremely important in complex situa-
tions. Rather than providing empirical results, in this paper we focus on the formal and
theoretical aspects.

2 Problem formulation

Let {R1, . . . ,RN} denote a collection of N robots operating in a shared workspace. Each
robot may be an articulated robot (such as a manipulator) or a rigid robot (such as a
mobile robot). The motion planning and control problem can be stated as a dynamic
game that is played with one or more players also called agents or decision makers (in
our case controllable robots). Sometimes we have an additional player, called ”nature”,
whose actions influence the evaluation of the state of the game, leading to uncertainties.

We are interested in feedback control strategies (policies) that optimize one or more
performance indices in an appropriate game-theoretic sense (such as a Nash equilibrium
or Pareto optimality), which can be applied to different multiple robot coordination
problems.

Let us consider a mathematical framework for the general motion planning problem
formulated as N -person discrete-time infinite dynamic game in the extensive form [1].
The game (in deterministic case) involves the following components:

• A set, N = {1, 2, . . . , N}, of N players or, equivalently, agents (independent robots
{R1, . . . ,RN}), and a set, K = {0, 1, . . . , K} denoting the stages of the game, that



correspond to moments at which decisions are made. K is the maximum number
of the game stages.
• An infinite set X = X 1×X 2×· · ·×XN , where X i is a state space of the i-th robot,
called the state space of the game. The state of the game xk belongs to X for all
k ∈ K and k = K + 1. The discrete-time representation induces a discretisation of
the state space.
• An infinite set U i

k, defined for each k ∈ K and i ∈ X , which is called control (action)
space of the i-th robot at stage k. Its elements are admissible controls ui

k of R
i at

stage k.
• A finite or infinite set Θ, which denotes the action (control) space of the additional
(N + 1) player, nature, at stage k ∈ K. Any admissible action θk of nature at
stage k is an element of Θ. For example, future positions of the mobile robot
are not completely predictable due to slipping of the wheels. Thus, the game-
theoretic interpretation of this situation is that a nature player interferes with
motion commands.
• A function fk,

fk : X × U1k × . . .× UN
k −→ X ,

defined for each k ∈ K, so that

xk+1 = fk(xk, u1k, . . . , uN
k ) (1)

for some x0 ∈ X which is the initial state of the game.
• stochastic case,

fk : X × U1k × . . .× UN
k ×Θ −→ X ,

defined for each k ∈ K, so that The difference equation (1) is the state transition
equation.
• A set, Yi

k, defined for each k ∈ K and i ∈ N, and called the perception or observation
space of Ri at stage k, to which the observation yi

k belongs at stage k.
• A set, Ωi, defined for each k ∈ K and i ∈ N, which is called the sensing action
space for nature at stage k ∈ K. The sensing action ωi

k, at stage k is an element of
Ωi

k, and ωi
0, ω

i
1, . . . is the sequence of measurement errors, or measurement noise.

• A function hi
k, h

i
k : X → Y

i
k, defined for each k ∈ K and i ∈ N, so that

yi
k = hi

k(xk), k ∈ K, i ∈ N (2)

The equation (2) is the observation equation of Ri concerning the value xk. The
function hi

k is a system output function.
• A finite set, ηi

k, defined for each k ∈ K and i ∈ N as a subset of {y10, y
1
1 , . . . , y

1
k; . . . ;

yN
0 , yN

1 , . . . , yN
k ;u

1
0, u
1
1, . . . , u

1
k−1; . . . ;u

N
0 , uN

1 , . . . , uN
k−1}, which determines the in-

formation gained and recalled by Ri at stage k of the game. It worth knowing
that information plays an integral role in choosing actions and this results in two
different classes of games: games of imperfect information and games of incomplete
information. In the former class all the aspects of the game are known to every
player. While a player might not know what specific actions other players will take,
it does have access to all the information upon which those decisions will be made.
Extensive-form and normal-form games fall into this category. With this definition,
each robot might have access to the actions and observations that where made by
the other robots.



• A set Ii
k, defined for each k ∈ K and i ∈ N as an appropriate subset of {(Y10 ×

Y11 × . . . × Y1k ) × . . . × (YN
0 × Y

N
1 × . . . × YN

k ) × (U
1
0 × U11 × . . . × U1k−1) × . . . ×

(UN
0 × UN

1 × . . . × UN
k−1)}, compatible with ηi

k. Set I
i
k is called the information

space of the i-th decision maker at stage k, induced by his information ηi
k. The

information space can be considered as a replacement for the state space in the
case of imperfect state information.

• A prespecified class Γi
k of mappings γi

k : I
i
k → U i

k, which are the strategies (or,
equivalently, decision rules) available to Ri at stage k. The combined mapping
γi = {γi

1, . . . , γ
i
K} is a strategy for R

i in the game, and the class Γi of all such
mappings γi is the strategy space ofRi. A simultaneous specification of the strategy
for each Ri is called the game strategy, and denoted by γ. The space of game
strategies is denoted by Γ = Γ1 × · · · × ΓN .

• A real-valued functional Qi : (X × U10 × . . .× UN
0 )× (X × U11 × . . .× UN

1 )× . . .×
(X × U1K × . . .× UN

K )→ R (where R denotes the space of real numbers) is defined
for each i ∈ N, and called cost functional (or loss functional) of Ri in the game of
fixed duration.
The preceding definition presents an extensive form description of a dynamic game,

since the evolution of the game, the information gains and exchanges of the robots throug-
hout the decision process, and the interactions among the robots are explicitly displayed
in such a formulation.
The general task is to determine strategies that optimize the cost functionals in some

appropriate sense. The selection of a game strategy (robot control strategy) depends on
the amount of cooperation that occurs between robots. For any given N -tuple of strate-
gies {γi ∈ Γi; i ∈ N} the motion strategies (control laws) of the robots are determined
by the relations

ui = γi(ηi), i ∈ N (3)

where ηi denotes the information set of Ri. A several possible information structures
can be distinguished [1] (e.g. open-loop pattern, closed-loop patterns, feedback patterns,
etc.). We are interested in closed-loop patterns, particularly in the state feedback pattern
i.e. ηi

k = {xk}, k ∈ K. We assume that for each k, the state xk is available so that
admissible control strategies are of the form

ui
k = γi

k(xk), i ∈ N (4)

We will select the specific robot motion strategies depends on the amount of cooperation
that occurs among robots.

3 Coordination strategies

LetQi(γ) denotes the cost associated with γ, to bring the robot from given initial position
xinitial to a final position xfinal. In general, there may be many strategies in Γ that
produce equivalent costs. The natural partial ordering, 4, can be defined on the space
of game strategies, Γ. For two strategies γ, γ′ ∈ Γ we say that

Qi(γ) 4 Qi(γ′) iff Qi(γ) 6 Qi(γ′) ∀i ∈ N

The minimal game strategies with respect to 4 are better or equal to all other strategies
in Γ [8]. The main goal is to find the strategy γ which minimize Qi(γ), i ∈ N. Very often



some additional constraints should be taken into account, and generally those constraints
can expressed as g(x) ≤ 0.

To simplify notation we restrict our further considerations to the case of the system
consisting of two robots.

3.1 Robots have independent goals

Suppose that each mobile robot Ri, i = 1, 2 has individual goal and cost functional,
Qi, to be optimized. Each robot is interested in local results and any cooperation is
allowed. Without cooperation the robot chooses actions that conflict with the other
robot. In a deterministic case this problem can be stated as follows

min
ui∈Ui

Qi(xi, u1, u2), i = 1, 2 (5)

This is a deterministic game for which the simplest ”solution” is a Nash equilibrium [1]
i.e., a pair (u∗1, u∗2) satisfying

Q1(u∗1, u∗2) ≤ Q1(u1, u∗2), ∀u1 ∈ U1 (6)

Q2(u∗1, u∗2) ≤ Q2(u∗1, u2), ∀u2 ∈ U2 (7)

where (u∗1, u∗2) ∈ U1 × U2 is obtained as

u∗1 = arg min
u1∈U1

Q1(u1, u∗2) (8)

u∗2 = arg min
u2∈U2

Q2(u∗1, u2) (9)

It should be noted, that generally, for noncooperative dynamic games there may exist
an uncountable number of informationally non-unique Nash equilibria. However, here,
we deal with a more restrictive class of Nash equilibrium solutions – the so called feedback
Nash equilibrium – which is devoid of any non-uniqueness.

Another way to eliminate informational non-uniqueness is to formulate the dynamic
game in a stochastic framework. Under an appropriate stochastic formulation, every
strategy has a unique representation [1]. In this case we introduce an additional player,
nature, and an additional set Θ, which denotes the action (control) space of the additional
player, at stage k ∈ K. Any admissible action θk of nature at stage k is an element of Θ.
For example, future positions of the mobile robot are not completely predictable due to
slipping of the wheels. Thus, the game-theoretic interpretation of this situation is that
a nature player interferes with motion commands.

Example 1: In the situation, in which robots have independent goals, a typical task is
to simultaneously move each robotRi from a given initial state xi

initial ∈ X
i to some final

state xi
final ∈ X

i while avoiding collisions with other robots and obstacles. In this case

the discrete state trajectory for an individual robot is represented as xi : [0, K+1]→ X i.
To evaluate performance of each robot in such a task, a cost functional can be of the
form

Qi(γi) =

K
∑

k=1



qi
k(x

i
k, ui

k)
∑

j 6=i

c
ij
k (x)



 + pi(xi
K+1) (10)



in which qi
k represents a cost function, which is a standard term used in a discrete-time

dynamic optimization problems. Penalty term c
ij
k represents the interactions between

the robots, and function pi
k represents the goal in terms of performance [8].

The most extreme case when the robots have totally opposite goals i.e. Q1 ≡ −Q2,
can be described as a zero-sum dynamic game. Two robots (or robot teams) playing
football might be given as the typical example of such a game Fig. 2.

Figure 2. Robots playing football [6].

3.2 Loosely cooperating robots

A situation in which some subsets of robots or even all robots wish to act in unison
but they have different cost functionals can be described as a multiobjective optimization
problem or cooperative game problem. In this case the strategies, known as a Pareto
optimal solution [10], stands out as a reasonable equilibrium solution, since it features
the property that no other joint decision of the robots can improve the performance of
at least one of them, without degrading the performance of the other. In a deterministic
case the action coordination problem of the two ”loosely cooperating” can be written as
follows

min
ui∈Ui

Qi(x1, x2, u1, u2), i = 1, 2 (11)

There are many methods to find Pareto optimal solution [4, 10].

Example 2: One of the possibly tasks in which robot cooperation can increase
execution time is foraging. Foraging consists of searching the environment for objects
(referred to as attractors) and carrying them back to central location. Mobile robots
performing this task would potentially be suitable for garbage collection or specimen
collection in a hazardous environment.



3.3 Tightly cooperating robots

If the robots are working to accomplish a single task and there is a common cost
functional Q ≡ Q1 ≡ Q2 we have a team problem

min
ui∈Ui

Q(x1, x2, u1, u2), i = 1, 2 (12)

The robots have no local goals and they try to optimize the same cost functional. The
resulting solution (u∗1, u∗2) is known as the team-optimal solution, and it requires satis-
faction of a single inequality

Q(u∗1, u∗2) ≤ Q(x1, x2, u1, u2), ∀ u1 ∈ U1, u2 ∈ U2 (13)

In fact, deterministic team problems are not different from optimal control, since all
equilibrium solutions are different representations of the same N -tuple of strategies which
is associated with the global minimum of a single objective functional.
Let us now consider the other extreme case – two robots act as a single mechanism

(a composite robot). Of course, the robots have a common goal and one performance
objective.
Example 3: The system consists of two robot manipulators manipulating a common

object shown in Fig.3.

force transducers

CCD cameras
tactile

sensors

CCD camera

Figure 3. Two robot manipulators manipulating a common object.

The goal is to find the admissible trajectories of two cooperating robot arms in order
to manipulate a common movable object [14]. This problem can be expressed as an
optimal control problem [15]

min
(u1,u2)∈U1×U2

Q(x1,x2,u1,u2), (14)

subject to loop closure constraint (to preserve closed kinematic chain)

h(x1,x2) = 0 (15)

and some additional constraints
g(x1,x2) ≤ 0 (16)



which are mechanical constraints due to mobility limitations of the joints, and cons-
traints caused by workspace occupancy conflicts between the object and the robot arms.
Now, x1,x2 and u1,u2 are vectors, whose dimensions are equal to degrees of freedom
of the robot manipulators. Of course, in general, due to high nonlinearities this op-
timization problem cannot be solved analytically. To obtain a numerical solution, the
infinite-dimensional optimization problem can be approximated by the finite-dimensional
problem in mathematical programming [15].

4 CONCLUSION

A problem of coordination of multiple robots working in a shared environment has been
described. The relationship between multiple robots coordination problems and game-
theoretic issues has been showed. A dynamic game approach can provide a formulation
of the optimal multi-robot control strategies that can be obtained. That framework can
be served as a unified structure facilitates the comparison of different algorithms. It is
obvious that, in some real-life situations, the approach based on game theory cannot be
expected to directly yield a numerical solution, particularly if the dimension of the state
space is very high (e.g. a lot of robots with many degrees of freedom). As the models of the
multiple-robot system become more realistic the solution of the mathematical problem
(i.e. corresponding dynamic game) involved becomes very difficult, time consuming and
computationally expensive. One possible way to overcome this problem is based on
combining DAI techniques (e.g. multi-agent models and algorithms) with concepts of
Dynamic Game Theory. DAI techniques provide a way of solving real-life problems for
which no more direct approach is available.
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