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Abstract. The article describes a new evolutionary based method to divide graph into 
strongly connected structures we called  α-cliques. The  α-clique is a generalization of a 
clique concept with the introduction of parameter α. Using this parameter it is possible to 
control the degree (or strength) of connections among vertices (nodes) of this sub-graph 
structure. The evolutionary approach is proposed as a method that enables to find separate 
α-cliques that cover the set of graph vertices.

1. Basic Concepts

A graph is a pair G= (V,  E), where V is a non-empty set of vertices and E is a set of edges. 
Each edge is a pair of vertices {v1, v2} that v1≠ v2. [2,15]

A clique Q=(Vq, Eq) in graph G=(V, E) is a graph that Vq⊆V and Eq⊆E where each pair v1, 
v2∈Vq of vertices fulfills a condition {v1, v2}∈Eq. [4,11]

Sub-graph of G=(V,  E) is a graph G'=(V',  E') where V'⊆V and E'⊆E that for all  e∈E and 
e={v1,v2} if v1,v2 ∈V' than e∈E' [15].

2. The Concept of α-Clique

In many cases there is no need (or is not possible) to find an appropriate  family of sets where 
the elements within each set of that family are fully connected with other elements of the same 
set. It is often sufficient to find a family of sets where its elements are connected with at least a 
predefined percentage of elements from this set. Thus we define a concept of an α-clique to 
introduce a sub-graph with desired properties.

The α-clique in a graph  G = (V,  E) is a sub-graph  Qα = (Vα,  Eα) that  Vα⊆V and  Eα⊆E, 
k=Card(Vα ) for all vi∈Vα, ki is a number of vertices vj∈Vα  that {vi, vj}∈Eα that k/kαα ≤ .

The structure defined above possesses some interesting properties:

–it is very simple to prove that if α>0.5 then α-clique is a connected graph; 
–single vertex forms the smallest possible α-clique;
–not every subset  of  α-clique forms  α-clique with desired value of  α,  (this property is 
illustrated by the following example).
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For example: for α=0.8 we have α-clique as it is shown in the left part of Figure 1. (for all 
vertices k/kαα = ).

Figure 1. An example of α-clique (α=0.8) – left and a sub-graph, which is not such α-clique – right.

If we remove some node (all nodes have degree equal 8) we acquire a graph as it is shown 
in the right part of Figure 1. The degree of the node number 9 is 7, but 7/9<0.8 so this graph is 
not an α-clique with desired value of α equal 0.8, but of course it is an example of α-clique 
with α=0.7 or smaller. 

3. Evolutionary Approach to Find α-Cliques

The standard evolutionary algorithm (EA) works in the manner as it is shown in the Algorithm 1, 
but this simple scheme requires many problem specific improvements to work efficiently.

The adjustment  of the genetic  algorithm to the problem requires  a  proper encoding of 
solutions, an invention of specialized genetic operators for the problem, accepted data structure 
and a fitness function to be optimized by the algorithm.

1. Random initialization of the population of solutions.
2. Reproduction and modification of solutions using genetic operators.
3. Evaluation of obtained solutions.
4. Selection of individuals for the next generation.
5. If stop condition is not satisfied, go to 2.

Algorithm 1. The evolutionary algorithm.

3.1   Individual Representation 
The whole information about the problem is stored in an array of data that describes all data 
connections.  This  array can be binary (a  matrix  of  incidence of  undirected graph:  0 –  no 
connection, 1- presence of connection) or non-negative (undirected graph) real-valued and in 
this case the stored value denotes the strength of the connection. 

Members  of  the  population  (Figure  2)  contain  their  own solutions  of  the  problem as  a 
dynamic table of derived  α-cliques (number of them may change during computations). Each 

2

1

3

4

9

5

8

6

7

2

1

3

10

4

9

5

8

6

7



element of this table (α-clique) has a list of nodes attached to this clique and each node is 
considered only once in one solution (population member). Unattached nodes are also included, 
they constitute small, one-element  α-cliques (one node is also  α-clique with  α=1). Thus each 
solution contains all nodes from a graph described by incidence matrix. But the solution with 
many small α-cliques is rather not profitable, and it is the role of evolutionary algorithm to find 
bigger ones.
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Figure 2. A structure of the population member.

Beside it, the member of the population contains several more data including: a vector of 
real  numbers,  which  describe  its  knowledge about  genetic  operators  and  a  number of  the 
operator chosen for current iteration - more details abut them will be given later in this chapter.

 3.2   Fitness Function
The problem’s quality function is closely connected with the function, which evaluates the 
members  of  the  population.  In  the  problem several  quality  functions  may  be  considered, 
depending on input data (binary or real) or what  α-cliques one want to obtain (equal size or 
maximal size etc.). The fitness function does not have any punishment part for constraints 
violation,  because  forbidden solutions  are not  produced by initializing function or  genetic 
operators. Thus all population members contain only α-cliques with their local values of α not 
less than the global value imposed on the solved problem.
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where:
n – numbers of α-cliques in the valued solution;



li – number of nodes in the i-th α-clique;
D – the data array (incidence matrix);
tij, tik – nodes of the i-th α-clique.

Applying the fitness function (1) in computations gives as a result  α-cliques of medium 
size (almost equal) and this version was used to solve the testing problem, while the fitness 
function (2) strongly promotesα-cliques of bigger size with some remaining very small ones:
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where:
all symbols have the same meaning as in the formula (1).

3.3   Specialized Operators
The  described  data  structure  requires  specialized  genetic  operators,  which  modify  the 
population of solutions. Each operator is designed in such a manner that preserves the property 
of  being  α-clique  for  the  modified  parts  of  solutions.  If  modified  solution  violates  the 
limitation of  being  α-clique,  the operation is  cancelled and no modification of  solution is 
performed.  This  method  makes  it  more  difficult  for  the  evolutionary  algorithm  to  find 
satisfying  solutions,  due  to  possible  bigger  problems with local  maximums,  than  standard 
method with penalty function, but it gives the certainty that computed solutions are always 
allowed. 

Designed genetic operators are:

–mutation – an exchange of randomly chosen nodes in different α-cliques;
–movement of randomly chosen node to a different α-clique;
–“intelligent” movement – performed only if this operation gives better value of fitness function;
–concatenation – tries to concatenate (mainly small) α-cliques;
–also multiple versions of operators are applied (each operator is repeated several times on 
the selected individual during one epoch).

3.4   Evolutionary Algorithm Applied to Solve the Problem
Using of specialized genetic operators requires applying some method of sampling them in all 
iterations of the algorithm. In the used approach [7,13] it  is assumed that  an operator that 
generates  good  results  should  have  bigger  probability  and  more  frequently  effect  the 
population. But it is very likely that the operator, that is good for one individual, gives worse 
effects for another, for instance because of its location in the domain of possible solutions. 
Thus every individual may have its own preferences. Every individual has a vector of floating 
point  numbers,  beside  the  encoded  solution.  Each  number  corresponds  to  one  genetic 
operation. It is a measure of quality of the genetic operator. The higher the number is, the 
higher is the probability of the operator.

The ranking of qualities becomes a base to compute the probabilities of appearance and 
execution of genetic operators. This set of probabilities is also a base of experience of every 
individual and according to it, an operator is chosen in each epoch of the algorithm. Due to this 
experience one can maximize the survival chances of its offspring.

The applied selection method consists of two methods with different properties: a histogram 
selection (increases the diversity of the population) and a deterministic roulette (strongly promotes 



best individuals) [13], which are selected in random during the execution of the algorithm. The 
probability of executing of the selection method is obtained from the formula (3).
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where:
phis(t+1),phis(t) - probability of histogram selection appearance in following iterations (1-phis(t) 

is a probability of the deterministic roulette method pdet(t));
Fav(t),  Fmin(t),  Fmax(t) -  average,  minimal  and  maximal  values  of  fitness  function  in  the 

population;
σ(F(t)) - standard deviation of fitness function (F(t)) in the population of solutions;
a - a small value to change probability phis(t), in simulations a=0.05.

If  individuals  in  the population are described by a too small  standard deviation of  the 
fitness function (σ(F(t))) with respect to the extent of this function (max(Fav(t)- Fmin(t), Fmax(t)-  
Fav(t))), then it is desirable to increase the probability of appearance of the histogram selection. 
Conversely the probability of the deterministic roulette selection is increased. If parameters of 
the population are located in some range considered as profitable we may keep approximately 
the same probabilities of appearance for both methods of selection. It is important that always 
phis(t)+pdet(t)=1- which means that some method of selection must be executed.

4. Experimental Results

The concept of  α-clique and the described evolutionary algorithm have been used to solve a 
testing problem, described in this paragraph. The problem, we used as a testing example arose 
and was solved during airport designing, thus it is called an "airport example" [5], but it is an 
instance of a typical graph-clustering task.

Testing data is a symmetric matrix (27x27), which describes connections among 27 nodes 
(Figure 3) of graph representing designed airport. Graph nodes are some essential units of the 
airport, edges among them are flows of passengers, cargo, luggage etc. 

The problem is to find some clusters (the number of clusters is not known in advance) of 
strongly connected units that can be placed closely with high-band connections. The idea of 
dividing a graph into α-cliques seems to be very promising for the described and similar tasks. 
In this approach α represents a percent of connections among nodes that must be covered in 
the extracted cluster and the algorithm tries to find clusters with the highest rates of “goods” 
exchange among nodes of this cluster, minimizing the total number of clusters.

This problem (also known as an instance of DSM - Design Structure Matrix [3,5]) has been 
also solved using other kinds of algorithms including greedy [5], 2-opt [5], 3-opt [5,14] or 
BEA – Bounded Energy Algorithm [5] or even EA [1,6,9,10,12,16]. The mentioned algorithms 
were used only as “preprocessing” methods.  The preprocessing procedure helps to  extract 
bounded groups of elements from the considered data, but some additional tool is required to 
separate the clusters [8,10].

Our approach, contrary to algorithms mentioned earlier in this chapter, delivers a complete 
method that produces final solutions with ready to use clusters. It uses a specialized EA not 
only as a preprocessing tool but also as a final clustering method. The evolutionary method 



works quite fast and is rather simple, so it seems to be very promising and useful in solving 
such kinds of problems.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Figure 3. Original data.
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Figure 4. Ordering with EA (preprocessing) and extracting clusters with SCM [10].



Figures 4 and 5 show results obtained using initial data presented on Figure 3. Figure 4 
presents results obtained using EA as a preprocessing tool and with extracting clusters using 
SCM [10]  –  simple  clustering  method.  SCM is  almost  a  manual  method,  it  detects  deep 
minimums in the histogram of data from preprocessed matrix and according to this generates 
clusters. 

Figure 5 presents results generated by  α-clique based method. The number of extracted 
clusters is equal to earlier method, but results are obtained easier and faster. Additional benefit 
of this method is that changing parameters of the fitness function (for instance using (1) or (2) 
or similar) or α we can easily influence the obtained solution (i.e. bigger or smaller clusters, 
almost equal or diverse). 

On presented results numbers of columns marked with different colors in the last row of 
Figures 4 and 5 show extracted clusters of closely bounded elements of considered problem. 
Numbers of rows (and columns – symmetric problem) are the same as in Figure 3. Colors of 
small  squares  in  the pictures  denote the strength of  connection between considered nodes 
(black-big strength of connection, white – no connection)

22 16 13 2 1 10 9 8 7 5 27 23 17 6 26 24 21 20 14 4 3 19 12 25 11 18 15

Figure 5. Clustering with the α-clique method..

5. Conclusions

The concept of  α-clique gives  new possibilities of  separating “hardwired” structures  from 
considered data, but determining α-cliques is a problem with large-scale complexity. Thus it 
seems to be justified to apply evolutionary algorithm to solve it. Experimental results confirm 
that  applying  α-cliques to determine concentrations of  connections among objects delivers 
acceptable solutions and using specialized evolutionary algorithm makes it possible to obtain 
solution in reasonable time.
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