
Simultaneous Perturbation Stochastic Approximation
in Global Optimisation∗

Krzysztof Patan1

1 Institute of Control and Computation Engineering, University of Zielona Góra
ul. Podgórna 50, 64-246 Zielona Góra, Poland, email: K.Patan@issi.uz.zgora.pl

Abstract. The paper deals with global property analysis of the Simultaneous
Perturbation Stochastic Approximation algorithm. It spite of the fact that the
algorithm uses an estimation of a gradient, a global optimisation property can be
achieved by using properly shaped sequence {ck} used for generating trial points.
The experiments are performed on a number of test functions showing efficiency
of the method. The examined algorithm is also used to train a dynamic neural
network. A network under consideration is designed using neuron models with
internal dynamics. The identification of an industrial process based on real data
shows usefullness of the algorithm.

1 Introduction

Many problems arising in engineering practice have a nonlinear, dynamic nature. To
model such processes artificial neural networks can be applied. However, to satisfy re-
quirements, a neural network should be trained first using available data. Therefore,
optimisation techniques are of a crucial importance in the framework of neural network
theory [2].

Unfortunately, the training process of a neural network of the dynamic type, seems
to be an optimisation problem which is intrinsically related to a very rich topology of
cost (objective) function [3]. Classical methods, e.g. back-propagation based algorithms,
usually find one of the local unsatisfactory optima. A multi-start technique very seldom
ends successfully [5]. Thus, algorithms of global optimisation should be implemented.

Recently, a large amount of attention was paid to the stochastic algorithms, among
them stochastic approximation ones. This paper is devoted to the so-called Stochastic
Perturbation Stochastic Apprioximation (SPSA) method. This relatively new optimisa-
tion technique posseses a number of advantages compared to other well known stochastic
methods [8]. Moreover, it has a propery of global optimisation [4]. The main objec-
tive of this paper is to examine the global optimisation property of the SPSA and the
application of this to dynamic neural network training.

The paper is organized as follows. First, in Section 2, the SPSA method is presented
in detail. The dynamic neural network is described in Section 3. Section 4 contains

∗This work was supported by the State Committee for Scientific Research in Poland

(KBN) under the grant No. 4T11A01425

a series of experiments showing the global optimisation property of the SPSA and its
application to dynamic neural network training. Remarks and conclusions are given in
the final section.

2 Simultaneous Perturbation Stochastic Approximation

In recent years there has been observed a growing interest in stochastic optimisation
algorithms that do not depend on gradient information or measurements. This class of
algorithms is based on an approximation of the gradient of the loss function. The general
form of Stochastic Approximation (SA) recursive procedure is as follows [9]:

θ̂k+1 = θ̂k − akĝk(θ̂k) (1)

where ĝk(θ̂k) is the estimate of the gradient ∂J/∂θ̂ based on the measurements L(·) of the
loss function J(·) (where L(·) is a measurement of the loss function J(·) affected by noise).
In the context of neural network training, the loss function can be in the form of the sum
of squared errors between the desired and network outputs, calculated using the entire
set of input patterns (batch or off-line learning). The essential part of this equation
is the gradient approximation. The SPSA has all elements of θ̂ randomly perturbed
to obtain two measurements L(·), but each component ĝki(θ̂k) is formed from a ratio
involving the individual components in the perturbation vector and the difference in the
two corresponding measurements. For two-sided simultaneous perturbation, estimation
of gradient is obtained according to the formula [10]:

ĝki(θ̂k) =
L(θ̂k + ck∆k)− L(θ̂k − ck∆k)

2ck∆ki
(2)

where the distribution of the user-specified p-dimensional random perturbation vector,
∆k = (∆k1,∆k2, . . . ,∆kp)T is independent and symmetrically distributed about 0 with
finite inverse moments E(|∆ki|−1) for all k, i. One of the possible distributions that sat-
isfies these conditions is the symmetric Bernoulli ±1. Two commonly used distributions
that not satisfy these conditions are the uniform and the normal. The rich bibliography
presents sufficient conditions for convergence of the SPSA (θ̂k → θ? in the stochastic
almost sure sense). However, the efficiency of the SPSA depends on the shape of the
J(θ), the values of gain sequences {ak} and {ck} and distribution of the {∆ki}. The
choice of the gain sequences is critical to the performance of the algorithm. In the SPSA
the gain sequences are calculated as follows [9]:

ak =
a

(A + k)α
, ck =

c

kγ
(3)

where a, c, A, α and γ are non-negative coefficients. In spite of the fact that the SPSA
uses the gradient estimate, it it possibility to apply the method to global optimisation.
Two solutions are reported in the literature [1, 4, 8]: (a) using an injected noise, (b)
using a stepwise (slowly decaying) sequence {ck}. In this work the second solution is
used.

3 Dynamic neural network

The neural network under consideration exhibits dynamic characteristics. Dynamics
is introduced into a neuron in such a way that the neuron activation depends on its
internal states. This is done by introducing a linear dynamic system – the Infinite
Impulse Response (IIR) filter – into the neuron structure [7, 3]. In this way, each neuron
in the dynamic network reproduces the past signal values with the input up(k), for
p = 1, 2, . . . , P , and the output y(k). Three main operations are performed in this
dynamic structure. First of all, the weighted sum of inputs is calculated according to the
formula:

x(k) = wT u(k) =
P∑

p=1

wpup(k) (4)

where w = [w1 w2 . . . wP]T denotes the input–weight vector, P is the number of inputs,
and u(k) = [u1(k) u2(k) . . . uP (k)]T is the input vector (T is the transpose operator).
The weights play a role similar to that in static feedforward networks. The weights
together with the activation function are responsible for the approximation properties of
the model. Then the calculated sum x(k) is passed to the IIR filter. In this paper, the
filters under consideration are linear dynamic systems of different orders, viz. the first
or second order. The behaviour of this linear system can be described by the following
difference equation:

ỹ(k) =
n∑

i=0

bix(k − i)−
n∑

i=1

aiỹ(k − i) (5)

where x(k) is the filter input, ỹ(k) is the filter output, a = [a1 a2 . . . an]T and b =
[b0 b1 . . . bn]T are feedback and feedforward paths weighted by the vector weights, n is
the filter order and k is the discrete-time index. Finally, the neuron output can be
expressed as:

y(k) = F
(
g · ỹ(k) + c

)
(6)

where F (·) is the nonlinear activation function that produces the neuron output y(k), c
is the bias factor, and g is the slope parameter of the activation function. In the dynamic
neuron, the slope parameter can change. Thus, the dynamic neuron can model better
the biological neuron. A neural network consisting of dynamic neurons can have the
same structure as a standard feedforward back-propagation one. All unknown network
parameters can be represented by a vector θ. The objective of training is to adjust the
elements of the vector θ in such a way as to minimize some loss (cost) function:

θ? = arg
θ∈C

min J(θ) (7)

where θ? is the optimal network parameter vector, J : Rp → R represents some loss
function to be minimized, p is the dimension of the vector θ, and C ⊆ Rp is the set
of admissible parameters constituted by constraints. To minimize (7) the stochastic
approximation method presented in Section 2 is applied.

4 Experiments

4.1 Optimisation of sum of two gaussian picks

Let us consider a function composed of two gaussian picks defined as follows:

f1(x) = − exp
(
− (x1 + 1)2 − x2

2

)
− 1

2
exp

(
−
(

x1 −
3
2

)2

− x2
2

)
(8)

where x = [x1, x2]. Note, that the global minimum is f1(x∗) = −1 at x∗ = [−1, 0]. Let
the initial point x0 = [2.5, 1.5]. The parameters of the SPSA have been selected using the
“trial and error” method, and have the following values: a = 4, c = 5, α = 0.5, γ = 0.16
and A = 10. These parameters enable the property of global optimisation of the SPSA.
The results are given in Fig. 1. In Fig. 1(a) one can see two dimensional plot of the
function f1 and a sequence of solutions marked by black points. The algorithm slightly
approaches the local minimum located at x = [−1.5, 0] and then proceeds toward the
global minimum. The Fig. 1(b) presents the track of solutions generated by the SPSA.
This result clearly shows that, using suitable parameters, the algorithm can pass saddles
beetween local/global minima and find a final solution. A conclusion is that a proper
selection of the sequence {ck} is of a crucial importance. For example, let c = 1, a = 0.9,
α = 0.2, γ = 0.1, A = 10. In this case, the algorithm possesses strict local optimisation
property and finds a local minimum at x = [−1.5, 0] after 33 iterations with the accuracy
ε = 0.001. In turn, a large value of c results in the algorithm being unable to calculate a
gradient in a proper way and the method is slowly convergent. In spite of the fact that
a quite large number of iterations is needed to find a global minimum, the algorithm is
not complex. On PC machine with Intel Pentium Centrino 1.7GHz processor and 512
MB RAM the simulation including 5000 iterations lasts ≈ 1.15 seconds.

(a) (b)

-2

-2-3

-1

-1

0

0

x
1

x
2

1

1

2

32 0 500 1500 2500

Iterations

M
in

im
u
m

3500 4500
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

Figure 1. Optimisation of the function f1. Two-dimensional plot of the function with the
sequence of solutions (a), track of solutions (b).

4.2 Optimisation of “drop wave” function

The function considered next has a form:

f2(x) = 2−
1 + cos

(
12
√

x2
1 + x2

2

)
1
2 (x2

1 + x2
2) + 2

(9)

where x = [x1, x2]. The global minimum is f2(x∗) ∼ 0.5 at x∗ = [0, 0]. Let the initial
point x0 = [3.6, 3.2]. The property of global optimisation is examined with the following
parameters of the SPSA: a = 9, c = 15, α = 0.25, γ = 0.2 and A = 1000. The results
are given in Fig. 2. Such established sequences ak and ck allow the algorithm to easily
cross saddles and locate the global minimum. The searching process is clearly presented
in both Figs. 2 (a) and (b). In this case, the simulation including 10000 iterations lasts
≈ 2.5 seconds.

(a) (b)

0

0

1

1

-1

-1

-2

-2

-3

-3

-4
-4

2

2

3

3

4

4

x
1

x
2

0 1000 3000 5000

Iterations

M
in

im
u
m

7000 9000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Figure 2. Optimisation of the function f2. Two-dimensional plot of the function with the
sequence of solutions (a), track of solutions (b).

4.3 Optimisation of Rastriagin’s function

The last considered function is defined by the formula:

f3(x) = 100−
(
100−

(
x2

1 + x2
2

)
− 10 (cos(2πx1) + cos(2πx2))

)
(10)

where x = [x1, x2]. In this case, the function has four global minima f3(x∗) ∼ 19.5 at
x∗1 = [−0.5,−0.5], x∗2 = [−0.5, 0.5], x∗3 = [0.5,−0.5] and x∗4 = [0.5, 0.5]. Let the initial
point be x0 = [4, 4]. The best founded set of algorithm parameters is: a = 0.5, c = 3,
α = 0.6, γ = 0.3 and A = 100. The results of optimisation using this set of parameters
is shown in Fig. 3. The global minimum has been located pretty fast (∼ 500 iterations).
The algorithm quickly passes the searching domain into the region including minima
with lower values of the cost function and then tries to find global minimum jumping
between two neighbouring minima. This process is continued till the sequencess {ak}

(a) (b)

0

0

2

2

-2

-2

-4

-4

4

4

x
1

x
2

0 100 300 500

Iterations
M

in
im

u
m

700 900

-10

10

30

50

Figure 3. Optimisation of the function f3. Two-dimensional plot of the function with the
sequence of solutions (a), track of solutions (b).

and {ck} acquire proper values. An interesting behaviour is observed for c = 1. In this
case the algorithm searches the domain in a chaotic manner. Further analysis shows that
smaller values of c enable local optimisation properties, while larger c, e.g. c = 10 causes
the algorithm to search too large un area with negative effect. The searching process
consisting of 1000 iterations lasts ≈ 0.36 second.

4.4 Neural network training

In this section, the SPSA is applied to train the dynamic neural network described in
details in Section 3. The process under consideration is the actuator of the sugar evap-
oration station in the Lublin Sugar Factory (Poland) [6]. The actuator to be modelled
is the valve located at the inlet of the evaporation station. For this valve, two process
variables are available: the control value for the valve on the juice inlet to the evaporation
section (the actuator input), and the juice flow on the inlet to the evaporation station
(the actuation). With these two signals the neural model of the actuator can be defined
as:

y = FN (u) (11)

where FN denotes the nonlinear function. The dynamic neural network of the structure
N2

1,5,1 (two processing layers, one input, five neurons in hidden layer and one output),
is trained using the SPSA method. Taking into account dynamic behaviour of the valve
each neuron in the network structure possesses a first order filter. The model of the valve
is identified using real process data recorded during the sugar campaign in October 2000.
In the sugar factory control system, the sampling time is equal to 10 s. Thus, during
one work shift (6 hours) approximately 2 160 training samples per one monitored process
variable are collected. To perform experiments two data sets were used. The first set,
containing 500 samples, was used for training and another one, containing 1 000 samples,
was used to check the generalisation ability of the network.

9008007006005004003002001000

0.5

0.4

0.3

0.2

0.1

0

Discrete time

Figure 4. Modelling of the valve, testing phase: output of the valve (black) and output of the
neural network (gray).

The experiment was carried out for 7 500 iterations using the following parameters
a = 0.001, A = 100, c = 0.01, α = 0.25 and γ = 0.05. The modelling results for the
testing set are presented in Fig. 4. The parameter γ controls the decreasing ratio of
sequence {ck} and is set to a small value to enable a property of global optimisation.
Parameter a is set to a very small value to assure convergence of the algorithm. The
dynamic neural network is very sensitive to large changes in parameters values (dynamic
filters) and large values of a like 0.4 can result in the learning process becoming divergent.
The results achieved suggest that the model is pretty good.

5 Conclusions

The main objective of this work was examining the property of global optimisation of
Simultaneous Perturbation Stochastic Approximation algorithm. The one way to enable
the property of global optimisation of this method is to use a slowly decaying rate of
sequence {ck}. This sequence is responsible for generating trial points used for estimation
of a gradient. A number of experiments has been performed to show the ability of the
SPSA to find a global optimum. Moreover, a discussion on the influence of the value of
parameter c on behaviour of the method has been also included. Next, to show efficiency
of the algorithm it has been applied to dynamic neural network training. The algorithm
itself is not complex but, in the case of off-line training calculation of the cost function,
can be time consuming, especially in the case of large data sets used for training. Taking
into account that standard SPSA uses two measurements to calculate a gradient estimate,
the SPSA can be slower than gradient based methods. A solution is to apply one-sided
version of the SPSA. Summarizing, the SPSA is a fast optimisation method, but to
start the optimisation procedure, five parameters should be determined. To define these
values and use the method properly, a user should possesses a lot of knowledge about
this method. Taking into account the property of global optimisation, this stochastic
approach can be effectively used for optimisation and modelling of nonlinear processes.

Bibliography

[1] D. C. Chin. A more efficient global optimization algorithm based on Styblinski and
Tang. Neural Networks, 7:573–574, 1994.

[2] S. Haykin. Neural Networks. A comprehensive foundation, 2nd Edition. Prentice-
Hall, New Jersey, 1999.

[3] J. Korbicz, K. Patan, and A. Obuchowicz. Dynamic neural networks for process
modelling in fault detection and isolation systems. International Journal of Applied
Mathematics and Computer Science, 9(3):519–546, 1999.

[4] J.L. Maryak and D. C. Chin. Global random optimization by Simultaneous Pertur-
bation Stochastic Approximation. In Proc. of the American Control Conference,
ACC 2001, Arlington VA, USA, pages 756–762, 2001.

[5] A. Obuchowicz. Evolutionary Algorithms for Global Optimization and Dynamic
System Diagnosis. University of Zielona Góra Press, Zielona Góra, Poland, 2003.

[6] K. Patan and J. Korbicz. Application of Dynamic Neural Networks in an Industrial
Plant. In Proc. Int. Symp. Fault Detection Supervision and Safety for Technical
Processes, SAFEPROCESS 2000, Budapest, Hungary, pages 186–191, 2000.

[7] K. Patan and T. Parisini. Identification of neural dynamic models for fault detection
and isolation: the case of a real sugar evaporation process. Journal of Process
Control, 15:67–79, 2005.

[8] J. C. Spall. Introduction to Stochastic Search and Optimization. John Willey &
Sons, New Jersey, 2003.

[9] J.C. Spall. Multivariate stochastic aproximation using a simultaneous perturbation
gradient approximation. IEEE Trans. Automatic Control, (37):332–341, 1992.

[10] J.C. Spall. Stochastic optimization, stochastic approximation and simulated anneal-
ing. In J.G. Webster, editor, Encyclopedia of Electrical and Electronics Engineering,
New York, 1999. John Wiley & Sons.

