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1. Introduction 

An approach to residual stress analysis using evolutionary algorithms (EA) is 
considered. The final objective of this research is residual stress analyses in railroad 
rails and vehicle wheels. These residual stresses are of great technical importance for 
reliable prediction of safe rail and/or wheel life service. Both theoretical and 
experimental investigations of these stresses present complex large  numerical tasks 
formulated in terms of non-linear constrained optimization problems. So far several 
discrete methods (FE, BE, MFD) and deterministic solution approach were used [1] to 
solve these problems, but neutral networks (NN) were tried as well [2]. An attempt 
has very recently been made [3,4], and is currently continued here [2] in order to 
propose and examine the EA solution approach. However, due to the optimization 
problem in question, its size and complexity, special attention should be paid first to 
an essential increase in the efficiency of the EA applied. Several new concepts were 
proposed and are examined here using a variety of simple, but large size 1D and 2D 
tests (up to 2000 decision variables) to analyze residual stress generated in a prismatic 
bar subject to pure elastic-plastic bending. The following speed-up factors were 
achieved by means of the concepts mentioned above: ~2, ~3, ~10, while a 
simultaneous application of all of them resulted in the speed-up factor of up to twenty 
thus far. It is worth noticing that the closer to the exact solution one is, the larger the 
increase in EA efficiency. Further research is planed including continuation of efforts 
oriented increasing the efficiency of EA, analysis of residual stresses in true railroad 
components and the analysis of related large non-linear non-convex optimization 
problems.   

2. Formulation of optimization problems to be solved by the EA approach 
As it was already mentioned the theoretical as well as hybrid theoretical experimental 
analysis of residual stresses in railroad rails present complex tasks formulated in terms 
of non-linear constrained optimization problems. The shake-down mechanical model 
for evaluation of residual stresses in elastic-perfectly plastic material proposed in [5], 
was extended for linearly strain hardening material [6,7]. It is formulated in two steps 
as follows: 
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satisfying the conditions 
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hence the residual stress          (2.5) rp
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  hardening parameter; Cijkl – elastic compliance matrix; E – 

Young modulus; H – strain hardening modulus; Ighij – unit matrix; εij
p – residual 

plastic strain; σij
r – estimated residual stresses in a body under consideration due to 

actual applied loads; σij
E – elastic stresses computed as if the object behavior was 

purely elastic during the loading process; σY
E – yield stress. 

The above presented formulation is one of the target research problems that are to be 
solved in order to determine distribution of stresses throughout the rail or wheel cross-
section. However, in the present paper a benchmark problem is dealt with, namely the 
search for residual stresses in an elastic perfectly plastic bar of rectangular cross-
section (bx2H) subject to cyclic bending by the moment  M  exceeding its elastic 
capacity. This formulation is given below together with the relevant discrete form 
used to apply the EA. 
Find self-equilibrated normal stresses  σ(x,y)  that minimize complementary energy of 
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is the normal stress due to the bending of the considered bar as the purely elastic 
body; y  - limit of the elastic zone in the true elastic-perfectly plastic bar;  yσ  - yield 
limit. 

Introducing a rectangular mesh in the beam cross-section, and assuming unknown 
stress value σk, in each node for  k=1,…,N  one obtains corresponding discrete 
formulation of the above optimization problem. It will be solved using the EA. 

3. The EA solution approach to optimization problems 
3.1. The EA solution approach 

The following version of the solution approach using the  EA  was chosen and tested: 

 - tournament selection, 

 - simple crossing over applied alternately with heuristic one  

 - unequal mutation. 

Population within the range of  100÷1000  chromosomes was used while number of 
decision variables in the chromosome (stress values) varied, up to 2000. 

3.2. On acceleration of the EA solution process 

One of the most significant drawbacks of genetic and evolutionary algorithms lies in 
time consuming solution process when compared with relevant deterministic methods. 
Optimization problems formulated above for residual stress analysis may be 
characterized as large tasks. Therefore, the efficiency of EA algorithms presents a 
crucial point for their successful solution. There are various classical ways, of 
increasing their efficiency including tracing the best chromosomes in population, 
scaling of the fitness function or using  EA  with built-in information on the fitness 
function gradients. However, in the present paper we would like to present and test 
several original concepts for essential speeding-up the EA calculations. The following 
concepts were considered: 

i) various types of smoothing followed by global balancing of the raw stress 
results provided by the EA analysis; 

ii) non-standard use of parallel and distributed calculations carried out on a 
cluster, in order to obtain fast solution improvement; 

iii) concentration of analysis in zones of large errors; a posteriori error 
estimation has been proposed based on averaged solutions obtained by 



means of (ii), and error level has been used to influence selection 
probability. 

These concepts are outlined and presented below. They were successfully tested on a 
variety of benchmarks. 

3.3. Smoothing and balancing of raw EA solution 

Raw results obtained from the EA approach present a collection of locally scattered 
data while the true solutions usually are smooth at least piecewise. Therefore, an 
attempt has been made to apply moving weighted least squares (MWLS) technique [8] 
in order to smoothen the raw results of the standard EA approach. In the basic MWLS 
version one minimizes at each point the weighted error functional 
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with respect to the set of local derivatives of function  w  . 

Here  wi  is a function value supplied by the EA,    presents its approximation by 
means of expansion into the  p-th  order truncated Taylor series, while  v
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weighting factor. 

In the case of the second order 2D approximation used here  (p=2)  one has 
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where  g  is a smoothing parameter. Minimization conditions: 
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provide a set of simultaneous linear equations to be solved for unknown function 
value  w  and its derivatives   w,x , w,y , w,xx , w,xy,, w,yy   at the point  (x,y), where  w  has 
been expanded into Taylor series. 

Appropriate choice of the smoothing parameter  g≥0  is of significant practical 
importance. For  g=0  one deals with singularity of the weighting factor  vi  providing 
in this way interpolation for all given  wi   data (i=1,...,N). Otherwise, the higher the 
value of parameter  g ,  the smoother the approximation. Each smoothing as a side 
effect results in global equilibrium loss of the considered body (a bar here). The 
equilibrium is restored after a series of the  EA  steps. This process, however, may be 



aided by artificial balancing done immediately after each smoothing. In the bar cross-
section  F   the resultant, unbalanced axial force is evaluated, and relevant static 
moment is found by using the  EA  solution based stress data  σ. 

∫ ⋅= dFN σ    ,   ∫ ⋅⋅= dFyM X σ    ,   ∫ ⋅⋅= dFxM Y σ     (3.5) 

Assuming now the linear correction term of the form   cybxa +⋅+⋅=σ     (3.6) 

and using the same formulas (3.5.) one may equalize the relevant global quantities 
with unbalanced ones, and find unknown parameters  a,b,c. In the case when  (x,y)  
are Cartesian coordinates determined with respect to the central principal axes, 
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where  Ix ,Iy  are the inertia moments of the bar cross-section  F. 

A series of test problems have been analyzed for the case of the bar subject to pure 
cycling bending by the moment  M. Smoothing and balancing effects have been 
investigated for varying values of the smoothing parameter  g  and for variable 
number  n  of standard cycles between the smoothed cycles. These tests results are 
presented in Fig 1, Fig 2. Values  g=10  and  n=150 have been found to be the most 
effective. Effect of balancing is described by the data given in Table 1. Solution 
(smoothed and non smoothed axial residual stress for half of the bar cross section) is 
presented in Fig 3. 

 
Fig 1 - Smoothing for various values of 

parameter  g 
Fig 2 - Smoothing after every n-th 

iteration,  for  g=gopt=10 
 
 



Table 1. Effect of the global equilibrium balancing 
Error norm case Fitness function 

value maximum Euclidean 
No balancing after 

smoothing -10,315 0,23531 0,00674 

Balancing after smoothing -7,023 0,00342 0,00043 

 

 
non-smoothed solution 2D    smoothed solution 2D  

Fig 3 - Solution after 6000 iterations 

 

3.4. A` posteriori error estimation 

Information on solution error is a necessary part of any reliable analysis. Moreover, 
advantage may be taken to use this information in order to influence selection 
probability in those parts of the bar cross-section where solution errors are larger. 
Such solution strategy is expected to increase efficiency of the  EA. Of course, the 
true errors are not known. However, their a’ posteriori estimation is possible. 

The main concept of a’ posteriori error estimation applied here is to solve the same 
problem in an independent way  m-times. Each of this solutions will be slightly 
different. The difference between each of them, and the average of m-solutions (the 
best from each population) may serve as a reasonable error estimate.  

The algorithm is as follows. Let us denote  i-th solution by:  
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where  zk
i
   is   k-th  chromosome in  i-th solution, m  is the number of solutions (or 

processors), n – number of chromosomes (decision variables) in population. The 
averaged solution is  
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The simple arithmetic average may be replaced by the weighted average where 
weighting factors depend on the fitness function values. 

Thus the unknown true error   zk
(i) – zexact  is estimated by the approximate one    zk

(i) – 
z(av). 

Typical contour maps and 3D picture of true and estimated errors are shown in Fig 4 
and Fig 5. Typical results of error aided solution process are presented in Fig 6. 

 
 

Fig 4 Exact error 

 

 
Fig 5 - Estimated error 



 
 

Fig 6 - Solution using: - true error; - averaged 12 solution;  
- averaged 3 solution; - no support 

 
3.5. Distributed, and parallel calculation 

Time consuming  EA analysis may be shortened by means of distributed and/or 
parallel calculations. A typical approach is based on division of one full task, usually 
designed for one computer, into many subtasks performed on different processors 
(computers). These are used at the same time, each one performing only a portion of 
the whole task. 

Such option might be also available here. However, a different, original approach is 
considered. We use cluster with m-processors. Each one is used to run independent 
full solution process by the  EA. When all constraints are satisfied the process is 
stopped, and followed by exchange of information. Each population (from the same 
processor) sends its best chromosomes to one principal processor. In this way the 
principal population consists of the ‘best solutions’ and faster tends towards the final 
solution. The other advantage of using cluster is calculation of the average obtained 
for solutions found by all processors, as has been mentioned above. Speed-up based 
on using 4,8 and 12 processors for the problem discretized by 1200 decision variables, 
a population of  400 chromosomes and up to 25000 iterations, are presented in Fig 7. 

When additional smoothing was applied after 1500-th iteration the maximum and 
Euclidean error have been found equal to 0,0032 and 0,0008 versus 0,0424 and 
0,0028 respectively when no smoothing has been used. 

When all speed-up mechanisms have been applied together the total calculation time 
has been shortened about 20 times (Fig 8.) 



 
Fig 7 - Display of solution process based on using  1,  4,  8,  12 processors 

 
Fig 8 - Comparison of : - standard solution; - accelerated solution by simultaneous 

combination of all 3 concepts. 

4. Final remarks 
− -An  EA , efficient enough to find solution of large non-linear constrained 

optimization problems, similar to those resulting from the analysis of residual 
stresses in railroad rails has been developed and verified.  

− The solution approach was successfully tested on several benchmark problems 
including pure cyclic bending of an elastic plastic bar; optimization problems of 
up to 2000  decision variables were solved. 

− Special emphasis has been laid on approach efficiency. Several concepts 
increasing the solution convergence rate were investigated, including:  

- concentration of analysis in zones of large estimated errors  (speed-up 
factor ~2) 

- raw EA solution smoothing and balancing (speed-up factor ~3) 
- non-standard distribution of calculations (speed-up factor ~10). 

Combination of the above resulted so far in the speed-up factor increase of at 
least 20.  



It is worth noticing that the closer to the exact solution one is – the larger  EA  
efficiency is noticed. 

− Therefore, results currently obtained provide reasonable hope for the successful 
analysis of the true rail problem also. 

Further research planned 

− Continuation of efforts oriented towards increasing the  EA  efficiency, including 
further parallelization of calculations. 

− Analysis of further benchmarks including evaluation of residual stresses in thick-
walled cylinder subject to combined cyclic loading. 

− Reprogramming the  EA  core in  C, so far coded in  JAVA. 
− Analysis of residual stresses in railroad rails and vehicle wheels. 
− Analysis of large non-linear constrained optimization problems (convex and non-

convex) resulting from the physically based approximation applied to  
experimental investigation of residual stresses in railroad components. 
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