
An Algorithm of Incremental Construction
of Nonlinear Parametric Approximators

Jarosªaw Arabas and Andrzej Dydy«ski

Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland,
email: {jarabas, a.dydynski}@elka.pw.edu.pl

Abstract. A novel algorithm of incremental construction of nonlinear parametric
approximators is introduced that needs a relatively small number of parameters
to achieve good accuracy. The approximator is de�ned as a linear combination
of nonlinear base functions, and the method adds the base functions one by one,
observing the correlation between the residue function and the candidate for the
base function. The base functions do not need to be homogenous, i.e. to share the
same formula. The method was experimentally veri�ed and compared to neural
networks, and the preliminary results were encouraging enough to develop the
presented approach further.

1 Introduction
Nonlinear approximation is one of the fundamental tasks of many practical applications,
such as forecasting, data compression, control, etc. There is a continuous interest in
development of nonlinear models, such as polynomials, wavelets, fuzzy systems, neu-
ral networks and many others. The aforementioned approaches rise from a concept of
modeling an unknown nonlinear function to be approximated as a linear combination of
certain nonlinear functions (called base functions) of inputs. If the number of the base
functions is �xed, and each base function comes from a certain class and is completely
de�ned by a �xed number of parameters, then the whole model can be represented as a
vector of parameters. The approximation task is formulated as minimization of error in
the space of parameter vectors, therefore, models of such type are called parametric. The
error takes in general many local minima in the space of parameter vectors, so global
optimization methods are usually used to solve the nonlinear approximation task. In
practice it is impossible to measure the error exactly, so its value is estimated using sets
of samples. The minimization is performed with the error estimated from the training
set, and the model accuracy is tested with the use of the test set; both sets have usually
no common elements.

When using a parametric model, one has to choose the number of the base functions,
i.e. the number of parameters to be optimized. It is well known that increasing the
number of parameters results in general in getting lower error measure on the training
set. With the test sets the dependence is nonmonotonic, the error �rst decreases, and
after the number of parameters exceeds a certain threshold value, the error again grows
up. When designing the parametric model, it is desirable to set the number of the base

functions near the threshold value; unfortunately, this value cannot be apriori predicted
in general.

In this paper we present an approach to overcome this di�culty. We introduce a
model that is built incrementally. We present an iterative algorithm that introduces a
single base function in each iteration basing on nonlinear correlation measures between
the base function and the approximation residue. We focus on models with the monotonic
base functions, but contrary to the popular parametric models, the base functions can
come from di�erent classes, like polynomials or hyperbolic tangent.

One of the �rst incremental approximation algorithms was introduced by Ivakhnenko [1].
The presented algorithm of group method of data handling (GMDH) allows a complex
decision hypersurface to be approximated by a set of polynomials. Thresholds are em-
ployed at each layer in the network to identify those polynomials which best �t into
the desired hypersurface. Only the best combinations of inputs are allowed to pass to
succeeding layers, where more complex combinations are formed.

In the �eld of neural networks, probably the most popular algorithm for incremental
construction of a network is cascade correlation [4]. The approximator is a �cascade�
of functions: each function observes the approximator input and the output from the
previous function in a cascade. The functions are hyperbolic tangent.

Another approach is the projection of all training samples into one-dimensional space,
then the separation of a hyperplane so that the relevant class is separated. Then the
same operation for all other classes until complete separation is achieved. Minimization
of the hyperplanes number is done by methods based on Boolean algebra. Representative
for this approach are Mezard-Nadal algorithm [5], Marchand algorithm [5] or Li-Tufts
method [6]. The aforementioned methods are unfortunately ine�cient when the input
vectors are large and they are not yet a alternative for the neural network reduction
method like OBD [5].

2 Parametric approximation model
2.1 Model de�nition

Consider a function f : Rn → R to be approximated using a model g : Rn × RN ×
Rm+1 → R of a form

g(x,p,w) =
m∑

i=0

wifi(x,pi) (1)

where p and w are parameter vectors of size N and m + 1, respectively, and fi(x,pi) is
the base function dependent on Ni parameters, i.e. fi : Rn ×RNi → R. To simplify the
notation, we assume that there exists a function f0 : Rn → 1 with N0 = 0 parameters.
The vector p is obtained by putting the vectors pi one after another, so N =

∑m
i=1 Ni.

Consider the residue function r : Rn ×RN ×Rm+1 → R de�ned as

r(x,p,w) = g(x,p,w)− f(x) (2)

We can de�ne a function e : RN ×Rm+1 → R being the error measure. In this paper we
concentrate on the squared error

e(p,w) =
∫

D

[r(x,p,w)]2dx (3)

where D is a set of x values. Typically D can be a box, i.e. for each i there exist li, ui

values such that for each x ∈ D we get li ≤ xi < ui. In practice it is impossible to
compute the error (3) since this would require the computation of the integral value and
this is possible only for functions with a known analytical form. Instead, the error (3) is
estimated using a set of samples � pairs {x, f(x)}, so the error measure is

eA(p,w) =
∑

{x,f(x)}∈A

[g(x,p,w)− f(x)]2 (4)

where A is the set of samples.
In this paper we make another simpli�cation of the model (1) � we assume that each

base function fi takes a form

fi(x,pi) = hi

(
(pi)

T z
)

(5)

where z is an n + 1 dimensional vector

∀j = 1, ..., n zj = xj and zn+1 = 1 (6)

The function hi : R → R is called primitive. In our paper we assume that primitive
functions are monotonic, continuous, and limx→−∞ hi(x) = 0, limx→∞ hi(x) = 1.

The approximation task consists in �nding values of p and w such that the error
measure eT (p,w) is minimized for a certain training set T . Note that the minimization
takes place in (nm + m + 1)-dimensional space, and if functions hi are nonlinear, there
may exist more than a single minimum of the error measure, so when solving the ap-
proximation task one gets a global optimization task. The model structure (1) allows for
decomposition of this task into subproblems of:

1. searching for the primitive functions hi and the parameters pi,
2. error minimization with respect to the vector w.

Note that the residue function (2) is linear with respect to the vector w, so the error
measure (3) takes a unique minimum with respect to w if p is kept constant. This
makes the problem 2. relatively easy to solve numerically. Problem 1 however is more
complicated, and the main challenge is to formulate the quality criteria for choosing the
functions hi and the parameters pi.

2.2 Correlations and the decomposed model
Linearity of the model (1) with respect to w provides the opportunity to compute

the contribution of the fi function to the residue function (2). Note that if the values
of x are driven from a random variable, then the model output g(x,p,w) and the value
of each base function fi(x,pi) are random variables and it is possible to compute their
covariance

cov{fi(x,pi), g(x,p,w)} =
m∑

j=1

wjcov{fi(x,pi), fj(x,pj)} (7)

Assuming that

∀i, j = 1, ..., m, i 6= j cov{fi(x,pi), fj(x,pj)} = 0 (8)

we get

cov{fi(x,pi), g(x,p,w)} = wivar{fi(x,pi)} (9)

In other words, if base functions are orthogonal in a sense of (8) then the covariance of
the model output and each base function fi depends on the weight wi and the variance
of the base function values observed when inputting random values of x.

If primitive functions are monotonic, it is possible to observe another correlation
property. Namely we can observe for each primitive function that

cf{hi(x), x} = 1 (10)

where cf is a fractile correlation.
The fractile correlation [8] whose sample analog is called Spearman or rank correlation,

assumes that the two variables are measured on at least interval scales and the value of
correlation (i.e., correlation coe�cient) determines the extent to which values of the two
random variables are �proportional� to each other. The fractile correlation cf of two
random variables X and Y is de�ned as

cf (X,Y) = 12E{F (X)F (Y)} − 3 (11)

where E is the symbol of the expected value, and F (X) is the cumulative distribution
function of X. Value of cf (X,Y) is invariant to strictly increasing transformations of X
and Y , so it holds

cf (X,Y) = cf (f1(X), f2(Y)) (12)
for any strictly increasing functions f1, f2.

Observe that the following equation is true

cf{fi(x,pi), (pi)
T z} = 1 (13)

Moreover, for arbitrary vector q the value cf{hi(x,pi), a(q)T z + b} takes its maximum
at q = pi for any pair of a, b values (provided that a 6= 0).

3 Approximator construction algorithm
We can use the above observations to propose an algorithm for incremental construction
of the approximator (ICA). The algorithm is outlined in Fig. 1. The method starts with
an empty set of base functions, and the residue and the approximated functions are equal.
After that, the algorithm iterates the main loop. In each iteration, a fractile correlation
cf is computed between the residue function r(i)(x) and the scalar product dTx (i is
the iteration index). Vector d∗ is computed that maximizes the correlation. Next the
base function is determined by selecting a primitive function that gives the best linear
correlation with the residue function. It is necessary to compute aj and bj coe�cients
for each function separately since the fractile correlation of the weighted input (d∗)Tx
and the residue function does not determine the bias bj . Having determined the base
function fi one has to recompute the weights vector w(i).

The algorithm implies performing a series of optimization tasks. If the method is
stopped after m iterations then the approximator is comprised of m base functions. For

p(0) = ∅,w(0) = ∅, r(0)(x) = f(x)
repeat

compute d∗ = arg maxd∈Rn

∣∣∣cf{dTx, r(i)(x)}
∣∣∣

for each primitive function hj

compute {aj , bj} = arg max{a,b}∈R2

∣∣cl{hj(a(d∗)Tx+ b), r(i)(x)}∣∣
use the function gj∗ as a base function

fi(x,pi) = hj∗(aj(d∗)Tx+ bj)
where j∗ = arg maxj

∣∣∣cl{hj(ajdTx+ bj), r(i)(x)}
∣∣∣

pi = [bj∗, aj∗d],
p(i) = [p(i−1),pi],
compute w(i) = arg minw∈Ri+1 e(i)(p,w)

until a stop criterion is satis�ed

Figure 1. Algorithm for approximator construction

each base function, it is necessary to perform a single optimization in Rn (fractile cor-
relation is maximized with respect to d) and a series of k optimizations in R2 (linear
correlation maximization with respect to a, b), where k is the number of primitive func-
tions hj . In both cases it appears that the maximization task may not have a unique
maximum. In addition, after selecting a base function, the error is minimized with
respect to the parameters w, but fortunately in this case a unique minimum exists. Con-
sequently, one has to solve m global optimizations tasks in Rn, mk global optimization
tasks in R2, and m convex optimization tasks in R2 up to Rm+1.

4 Numerical example
Test data We veri�ed experimentally the presented algorithm. using the PROBEN1
benchmark originally published by Prechelt [2]. PROBEN1 contains 12 di�erent datasets,
including 9 datasets for the classi�cation task, and 3 datasets for the approximation. A
quick overview of the approximation problems datasets is given in Table 1. Each dataset
has its name, and the benchmark provides a few permutations of each dataset (e.g.
`building2' denotes a certain permutation of the dataset `building').

Algorithm details We assumed the following set of the primitive functions: hyperbolic
tangent h(x) = (tanh(x) + 1)/2, sigmoid function h(x) = 1/(1 + exp(−x)) and the series
of power functions

h(x) =





0 x < −1
0.5(1− |x|k) −1 ≤ x < 0
0.5(xk + 1) 0 ≤ x < 1
1 x ≥ 1

(14)

where k = 1, 2, 3, 4, 5. All optimization steps in the algorithm, i.e. maximization of
correlations and error minimization with respect to w were performed using the downhill

Table 1. Attribute structure of approximation problems. Number of binary and continuous
network inputs, number of network inputs used to represent missing values, number of outputs,
and number of examples. (Continuous means more than two di�erent ordered values).

Problem Input values Outputs Examples
b c m tot. c

building 8 6 0 14 3 4208
hearta 18 6 11 35 1 920
heartac 18 6 11 35 1 303

simplex method by Nelder and Mead [3]. The algorithm was terminated after completing
the �fth iteration, so the number of base functions was m = 5.

Test results Each of the datasets was divided into two disjoint, equal size sets: the
training set and the test set. The training set was used to build the approximator, and
the test set � to evaluate the approximator's quality.

We compared the ICA method to neural networks (NN) with a single hidden layer.
Since the number of hidden neurons strongly in�uences the NN performance, we tested
the nets with 5 hidden neurons (which makes the number of parameters equal to the
number used by the ICA) and we analyzed the NN structures with the number of hidden
neurons varying from 1 up to 10. Hidden neurons' activation function was the hyperbolic
tangent, and the Levenberg-Marquardt minimization method was used to minimize the
NN error. All tests were performed in the MATLAB environment.

Prechelt published the results of applying neural networks to his benchmark datasets [7].
He reported the relative mean squared error de�ned by

E(p,w) = 100 ∗ (fmax − fmin)eV (p,w) (15)

where fmin and fmax are the minimum and maximum values of the f(x) values, and V
is the test set.

We performed 60 independent runs of ICA and NN for each dataset in the testbed.
Table 2 gives the mean error and its standard deviation values for all compared approx-
imation algorithms.

Prechelt used RPROP [2] for training neural networks. RPROP is a fast backpropa-
gation algorithm which is very e�cient for medium data sets such of those at PROBEN1.
As a baseline for further comparison, Prechelt made a number of runs using multilayer
networks with sigmoidal hidden nodes. For each problem, 12 di�erent network topolo-
gies were used: one-hidden-layer networks with 2, 4, 8, 16, 24, or 32 hidden nodes and
two-hidden-layer networks with 2+2, 4+2, 4+4, 8+4, 8+8, and 16+8 hidden nodes on
the �rst and second hidden layer, respectively. All of these networks had all possible feed
forward connections. For each dataset, results for the best NN were reported.

Table 2. Results of tests for di�erent approximators. `NN eq.' stands for the NN with 5
hidden neurons, and `NN best' is the network structure for which the smallest test set error was
observed when changing the number of hidden neurons from 1 to 10. `Prechelt' stands for the
NN results reported in [2]

ICA NN eq.
dataset train stdv test stdv train stdv test stdv
building1 0.18 0.17 1.15 0.37 0.70 0.25 2.49 0.59
building2 0.54 0.64 0.58 0.65 0.99 0.45 1.01 0.29
building3 0.72 0.01 0.71 0.01 0.88 0.01 0.90 0.03
hearta1 2.96 0.15 3.67 0.13 2.40 0.72 9.35 0.246
hearta2 3.16 0.10 3.56 0.21 2.70 0.84 6.47 0.031
hearta3 3.17 0.09 3.48 0.12 2.49 0.56 6.12 0.016
heartac1 6.75 0.53 10.66 1.17 2.08 1.28 12.92 1.37
heartac2 6.42 0.34 8.15 0.90 1.43 1.09 9.23 0.95
heartac3 6.06 0.39 8.04 1.01 1.41 0.80 8.67 1.33

NN best Prechelt
dataset train stdv test stdv train stdv test stdv
building1 0.41 0.25 1.86 0.51 0.47 0.28 1.36 0.63
building2 0.44 0.80 0.46 0.68 0.24 0.15 0.28 0.20
building3 0.40 0.01 0.41 0.01 0.22 0.01 0.26 0.01
hearta1 3.19 0.38 5.32 0.32 3.55 0.53 4.55 0.41
hearta2 3.33 0.51 5.46 0.62 3.45 0.56 4.33 0.15
hearta3 2.75 0.46 5.73 0.74 3.74 0.72 4.89 0.91
heartac1 2.80 0.35 4.46 0.56 3.59 0.24 2.47 0.38
heartac2 1.64 0.59 6.79 0.74 2.58 0.42 4.41 0.56
heartac3 1.57 0.84 8.65 1.79 2.45 0.46 5.55 0.52

5 Summary and conclusions

A new approach to incremental construction of approximators was introduced. The
approach is competitive to standard methods such as neural networks. For all datasets
ICA turned out to be better than NN with the same number of parameters. ICA is still
a winner for certain datasets even when compared to more complicated NN structures
with higher number of hidden neurons and of hidden layers.

In the analysis of the approximator (1) we assumed no correlation between the base
functions, but this assumption was not veri�ed in the ICA algorithm. This issue still
needs further investigation, since if such correlations appear then the approximator qual-
ity may decrease. We also plan to generalize the ICA method to cover the spherically
symmetric base functions (RBF).

Bibliography
[1] Ivakhnenko A.G.: Polynomial Theory of Complex Systems. IEEE Transactions on

Systems, Man and Cybernetics, vol. SMC-1, no.4, October 1971.
[2] Prechelt, L.: PROBEN1: A set of benchmarks and benchmarking rules for neu-

ral network training algorithms. Technical Report 21/94, Fakultät für Informatik,
Universität Karlsruhe, Germany, 1994.

[3] Nelder J.A., Mead R.: Computer Journal, vol. 7, 1965, pp. 308�313.
[4] Fahlman S.E.: Faster learning variations on backpropagation: an empirical study.

Proc. Connectionist Models Summer School, Morgan Kaufmann, 1988, pp.38�51.
[5] Hertz J., Krogh A., Palmer R.G.: Introduction to the Theory of Neural Computing.

MIT Press, 1992.
[6] Li Q., Tufts D.: Synthesizing neural networks by sequential addition of hidden

modes. Proc. IEEE Int. Conf. on Neural Networks, 1994, pp.708�713.
[7] Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation

learning: The PROP algorithm. Proc. IEEE Int. Conf. on Neural Networks, 1993.
[8] Biller, B., Ghosh, S.: Dependence modeling for stochastic simulation, Proc. 2004

Winter Simulation Conf., 2004.

