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Abstract. This paper is devoted to the application of evolutionary computing in 

optimization and identification problems in uncertain random conditions. The algorithm is 

based on the stochastic representation of the data. Chromosomes are represented by 

multidimensional random vectors consisting of random genes in the form of independent 

random variables with the Gaussian density probability function. The stochastic 

optimization problem is replaced by a deterministic one by evolutionary computing for 

vector genes consisting of mean values and standard deviations. Special operators for 

mutation, crososver and selection are proposed.  Two numerical tests are presented. 

1 Introduction 

The evolutionary algorithms, as global optimization techniques, have been applied in many 

optimization problems in which searching design variables are deterministic [1,9,12]. There are 

physical problems when systems and processes have some uncertain parameters, e.g. materials 

properties, boundary conditions or geometry. The granular type of information [2] about these 

parameters necessities using various models of uncertainty in the form of interval, fuzzy and  

rough sets and the theory of probability. 

The concept of the interval and the fuzzy evolutionary algorithm and their applications in  

optimization and identification problems has been considered in [5,6].  

In the present paper another form of granularity is analyzed - the probability approach to 

optimum design. The parameters of systems and processes are modelled by random variables 

determined by a probability density function. The classical approach to the solution of such 

problems is based on stochastic programming [3]. The application of evolutionary computation 

to such problems involves some modifications. Genes should be modelled by random numbers 

and potential solutions of the optimization problem should be represented by stochastic 

individuals in the form of random vectors. The evolutionary computing technique based on the 

random representation of data can be named as a stochastic evolutionary algorithm (SEA) but 

this term can cause controversy because evolutionary algorithms are considered in the literature 

as stochastic searching algorithms due to their random nature. The term SEA makes sense if one 

stress as the fact that it is applied to solving stochastic optimization problems. 

 



 

2 The formulation of the stochastic optimization problem  

In the theoretical model of random phenomena the basic role is played by the probability space 

(Γ, F, P). The set Γ, called the space of elementary events (or sample space), represents all 

possible elementary outcomes of a trial associated with a given random phenomenon. 

F is a σ-algebra of subset of Γ. The elements of F are called random events, P is a probability 

measure defined of F  (0 ≤ P(A) ≤ 1, A ≤ F). 

A general non-linear stochastic programming problem can be stated as follows: 

Find a random vector ( )γX  
 
 

1 2
( ) [ ( ), ( ),..., ( ),..., ( )]

i n
X X X Xγ γ γ γ γ=X  (1) 

 
 which minimizes the objective function ( ) ( ( ))F Fγ γ= X  subject to the constraints 

( ) 0 , 1,2,...,j jP g p j m ≥ ≥ = X . If the problem is solved by the evolutionary approach, the 

vector ( )γX is considered as the chromosome, where ( )
i

X γ , i=1,2,…,n, are random genes.  

A gene is represented by a random variable, which is a real function ( )
i i

X X γ= , γ ∈Γ , defined 

on a sample space Γ and measurable with respect to P: i.e., for every real number 
i
x , the set 

{ }: ( )
i i

X xγ γ <  is an event in F. 

The chromosome ( )γX  is a function (measurable with respect to P) which takes every 

element γ ∈Γ   into a point 
n
R∈x . 

The mean value of the chromosome ( )γX is given as follows 
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[ ( )] , ,..., ,...,

i n
m m m mγ= =m E X  (2) 

where: 

 [ ] ( )( ) ( ) ( )i i i i i i im X X dP x p x dxγ γ γ
+∞

−∞
Γ

= = =∫ ∫E  (3) 

 

is the mean value of the gene ( )
i

X γ  and  ( )
i i
p x  is the probability density function (PDF) of 

this gene: 
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 ( ) ( )P ( )
b

i i i i
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a X b p x dxγ≤ ≤ = ∫  (5) 

 

The joint probability density function ( )1 2
, ,..., ,...,

i n
p x x x x  for the chromosome ( )γX  must 

satisfy the following conditions: 

 

 (i)   ( )1 2
, ,..., 0

n
p x x x ≥  (6) 

 

 (ii)   ( )1 2 1 2

fold

... , ,..., ... 1
n n

n

p x x x dx dx dx
+∞ +∞ +∞

−∞ −∞ −∞

−

=∫ ∫ ∫
�������

 (7) 

 

 

 

 (iii)   
( ) ( ) ( )( )

( )1 2

1 2

1 1 1 2 2 2

1 2 1 2

, ,...,

... , ,..., ...
n

n

n n n

b b b

n n
a a a

P a X b a X b a X b

p x x x dx dx dx

γ γ γ≤ ≤ ≤ ≤ ≤ ≤ =

= ∫ ∫ ∫
 (8) 

 



The matrix of covariance is given as follows: 

 

    ( )( )[ ] ( ) ( )
T

ij i i
k γ γ = = − − K E X m X m  (9) 

 

where the covariance between ( )
i

X γ  and ( )
j

X γ  is defined by: 

 

    ( ) ( ) ( )( ) ( )( ) ( ) ,
ij i i j j i i j j i j i j
k X m X m x m x m p x x dx xγ γ
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where ( ),i jp x x is the joint PDF of ( )
i

X γ  and ( )
j

X γ  given by: 
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If i j= , the covariance 
ii
k is represented by a variance: 

 

    ( ) ( ) ( ) ( ) [ ] ( )22 2 22
( ) ( ) ( )ii i i i i i i i i i i ik Var X X m x m p x dx X mσ γ γ γ
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−∞
 = = = − = − = −  ∫E E  (12) 

 

where: 
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In the present paper the random chromosome 
1 2

( ) [ ( ), ( ),..., ( ),..., ( )]
i n

X X X Xγ γ γ γ γ=X  has 

an n-dimensional Gaussian distribution of the probability density function, given as follows: 

 

 

 1 2 / 2
, 1

1 1
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∑
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where 0≠K  is the determinant of matrix covariance, ijK  the cofactor of the element 
ij
k  

of the matrix K . 

It is assumed that random genes are independent random variables. The joint probability 

density function is expressed by the probability density functions of single random genes as 

follows: 

 

    
1 2 1 1 2 2

( , ,..., ,..., ) ( ) ( ).... ( ).... ( )
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is the probability density function of the random gene ( )
i

X γ . 
It can be seen that if the random genes ( )

i
X γ , i=1,2,…,n, are random independent Gaussian 

variables, two parameters: the mean value 
i

m  and the standard deviation 
i

σ  describe the 

probability density function.  



3 The evolutionary algorithm based on the stochastic representation 

Stochastic optimization problems emerge when some parameters of the objective function or 

constraints are probabilistic. The application of evolutionary algorithms to solve such problems 

requires some modifications of the traditional evolutionary approaches because chromosomes 

consist of random genes ( )
i

X γ , i=1, 2,…, n, described by moments, e.g. by the mean value 
i

m  

and the standard deviation 
i

σ  in the case of Gaussian independent random genes. The mean idea 

of SEA is similar to the traditional evolutionary algorithm but all steps of algorithm must be 

modified to the stochastic data and their moments. Each individual expresses  

a stochastic solution. Each solution is evaluated, and a stochastic value of the fitness function is 

obtained as the result. The next generation is constructed on the basis of better stochastic 

chromosomes of the previous generation. In this case the special types of relations are defined. 

Also the stochastic types of operators (mutation and crossover) are constructed. It can be observe 

that the next population in the stochastic evolutionary algorithm is better than the previous one. 

The stochastic problem is solved by using mathematical operations on moments (e.g. the 

mean value 
i

m  and the standard deviation 
i

σ , etc.). Therefore, the original stochastic problem is 

considered as an equivalent deterministic problem. This technique is known very well in other 

problems, e.g. in solving the stochastic programming, stochastic differential equations, etc. Thus, 

the original stochastic problem can be reduced to a deterministic one. Instead of the random 

chromosome ( )γX  one can consider a deterministic chromosome chr which consists of n-vector 

pars of genes =( , )
i i i

m σg , i=1,2,…,n which correspond to random variable ( )
i

X γ   

     

 [ ] [ ]1 2 1 1 2 2
; ;... ;...; ( , ); ( , );...; ( , );...; ( , )

i n i i n n
m m m mσ σ σ σ= =chr g g g g  (17) 

 

In more general cases the gene 
i
g  consists of more moments of random variable ( )

i
X γ . Due 

to the Gaussian distribution two moments are sufficient to describe random genes. 

In the presented SEA the evolutionary operations are applied to the random genes ( )
i

X γ  by 

modification of mean values mi and standard deviations σi. 
It is worth stressing some similarities between the proposed approach to the stochastic 

representation of the EA and the evolutionary strategies [9]. 

For each vector gene =( , )
i i i

m σg  i=1,2,…,n, two kinds of constraints are imposed: 

  

 
min max

i i im m m≤ ≤  (18) 

  

 
min max

i i iσ σ σ≤ ≤  (19) 

 

where indices: min and max mean here the maximum and minimum values. 

3.1 The mutation operators 

Two types of the Gaussian mutation are introduced. The term – the Gaussian mutation means the 

type of the mutation, which is used in the traditional EA. The mutation probability is described 

by pro_mut. 

In both cases the modified vector gene =( , )i i im σg  is randomly selected from the 

chromosome [ ]1 2; ;... ;...;i n=chr g g g g .  



In the first type of mutation (mutation I) the mean value im of the random gene ( )iX γ  is 
modified. The operator is expressed by the following equation: 

   

 * o

i i im m m= +  (20) 

 

where o

im is a sampled value (with the Gaussian distribution). 

If the value *

im does not fulfil the condition (18) the mutation is repeated.  

In the second type of the mutation (mutation II) the standard deviation iσ of the random gene 

( )iX γ  is modified. The operator is expressed by the following equation: 

   

 * o

i i iσ σ σ= +  (21) 

 

where o

iσ is a sampled value (with the Gaussian distribution).  

In the case when value *

iσ  does not fulfil the condition (19) the mutation is repeated.  

Both kinds of mutations can work together or individually. In the present paper both kinds of 

mutations work together. The mean value im  and the standard deviation iσ , which describe the 

random gene ( )iX γ , can change during the mutation, thus the probabilistic characteristics of the 

random gene undergo modification.  

3.2 The crossover operator 

An arithmetic crossover operator is proposed in the stochastic evolutionary algorithm. Each 

chromosome in the population can be selected for the crossover with the probability pro_cro. 

Consider two parent chromosomes: 

 

 [ ]_ , ( , )i i i iwhere m σ= =
a

chr a g_a g_a  (22) 

 

 [ ]_ , ( , )i i i iwhere m σ= =
b

chr b g_b g_b  (23) 

 

They create two children * *[ ]i=chr_a g_a  and  * *[ ]i=chr_b g_b  with the vector genes  

 

 * (1 )i i iλ λ= + −g_a g_a g_b  (24) 

 

 * (1 )i i iλ λ= + −g_b g_b g_a  (25) 

 

where [0,1]λ ∈  is a random value with uniform distribution. 

As a result of the crossover operator the children contain genes with modified probabilistic 

characteristics described by moments of random genes ( )iX γ , i=1,2,…,n. 

3.3 The selection 

The selection is based on the tournament selection, which is used in traditional EA. A special 

criterion for comparing two random individuals is presented. Consider the fitness function for 

two different random chromosomes: ( )1 1( ) ( )F Fγ γ= X  and ( )2 2( ) ( )F Fγ γ= X . The random 

values 1( )F γ  and 2 ( )F γ  are described by the moments: 1 1 1( ) ( , )F FF mγ σ→  and 

2 2 2( ) ( , )F FF mγ σ→ , respectively. The minimization problem is considered.  

The parameters 1β  and 2β  decide the probability of survival of chromosomes: 1( )γX  and 



2 ( )γX , respectively. At the beginning the parameters 1β  and 2β  are equal to 0β  (in this work 

0β =0.1). In the next step, the conditions: 

 

 1 2F Fm m<  (26) 

 

 1 2F Fσ σ<  (27) 

 

are checked. If the conditions (26) and (27) are fulfilled, the probability of the survival of the first 

chromosome is bigger by mβ∆  and σβ∆ , respectively (in this work mβ∆ = 0.7, σβ∆ =0.3). In the 

contrary cases the probability of the survival of the second chromosome is bigger by mβ∆  and 

σβ∆ , respectively. It is possible to observe that if the both stochastic values of the fitness 

functions are identical, the probability of the survival of both individuals is identical. Finally, the 

survived individual is sampled with respect to the survival parameters 1β and 2β . 

All individuals in the population are generated using the tournament selection. There is  

a possibility that the best individual will not survive.   

3.4 Evaluation of the stochastic fitness function 

One of the most important steps of the evolutionary algorithm is the evaluation of the fitness 

function. If the design variables are deterministic, the fitness function result is also deterministic. 

In the case of solving the stochastic optimization problem, the problem of evaluating the fitness 

function is much more complicated. A few ways to estimate the results in this case are possible. 

In the case of simple mathematical functions the basic arithmetic operators {+;-;*;/} for 

stochastic representation are used. Due to the use of the Taylor’s expansion (for small 

fluctuations of design variables) and other techniques some basic bench-marks can be computed.  

If the fitness function is the explicit function of stochastic design parameters, its value can be 

computed on the basis of the Taylor’s extension. Unfortunately, in many cases the fitness 

function evaluation can be done after solving the stochastic boundary-value problem. The 

stochastic boundary-value problems can be solved by means of the stochastic boundary element 

method SBEM [4] or the stochastic finite element method SFEM [8]. 

4 The example of the stochastic optimization problem 

The aim of the test is to find the vector ( )γX  which minimizes the function: 

 

 3 3

1

1
( ) ( ( )) ( ) 0.7 cos 2 ( ) 0.7

2

n

i i

i

F F X a X
π ππ

γ γ γ π γ
π=

   = = − − −   
   

∑X  (28) 

 

where: n – the number of random design variables ( )iX γ , a – the parameter, which 

determines the number of the optima. 

The mean value and the standard deviation of the fitness function ( )F γ  were computed 

using the stochastic arithmetic operators {+;-;*;/} and Taylor’s extension (for small fluctuations).  

The following constraints for the parameters of the random numbers were assumed: 

0 1im≤ ≤  for the mean value and 0 0.2iσ≤ ≤  for the standard deviation, where: i=1,2,…,n. 

The optimum solution is represented by chromosome: [ ]i=chr g , where 
=( , )=(0.7,0.0)i i im σg for each gene. The minimum of the random value of the fitness function is 

described by the parameters: =( , )=(0.0,0.0)opt opt optF m σ .  



 

Figure 1. The mean value of the fitness function (28) for a=3, (n=1, n=2). 

The finish condition depends on the found result. The special parameter: distance  was 

introduced:  

 

 
2 2

=
m

distance distance distanceσ+  (29) 

 

where: 
m

distance  and distanceσ  are the differences between the parameters of the found 

results and the actual results ( =( , )=(0.7,0.0)
i i i
m σg , i=1,2,…,n). The following values of the 

parameters 
m

distance  and distanceσ were assumed: 

 

 

 
1

= n
m m

distance
n

ε  (30) 

 

 
1

= ndistance
n

σ σε  (31) 

 

where: n – the number of design variables, 
m

ε - the parameters of differences of the mean 

value (
m

ε =0.02), σε - the parameter of the differences of the standard deviation ( σε =0.002). 

Table 1 contains the selected results for the following parameters: n=3, a=3.  

In the first step of investigation, the optimal probabilities of mutation and crossover operators 

were searched. In the second stage the best population size was searched. The selected results 

(n=3, a=3) (mean value from 10000 independent experiments) are presented in  

Tables 1-3. 

Table 1. The number of the fitness function computation (n=3, a=3). 

The crossover probability (pro_cro) The mutation probability (pro_mut) 

0.1 0.2 0.3 0.4 0.5 

0.1 426 589 774 972 1210 

0.2 387 504 640 782 946 

0.3 399 493 603 728 859 

0.4 419 503 595 706 821 

0.5 438 519 600 697 804 

 



Table 2. The number of the fitness function computation (n=3, a=3). 

The number of chromosomes (pop_size) The number of the fitness function computation 

3 338 

4 313 

5 302 

6 304 

7 308 

8 319 

9 333 

10 342 

 

The searching of the optimal parameters of the stochastic evolutionary algorithm for all 

combinations of parameters n and a were carried out. The results are included in Table 3. 

Table 3. The optimal parameters of the stochastic evolutionary algorithm (pro_mut/pro_cro/pop_size) 

The number of design variables n  The number of optimum a 

1 2 3 4 5 

1 0.4/0.1/4 0.4/0.1/5 0.3/0.1/4 0.2/0.1/4 0.2/0.1/4 

2 0.3/0.1/4 0.3/0.1/6 0.3/0.1/9 0.3/0.1/10 0.2/0.1/12 

3 0.2/0.1/4 0.2/0.1/5 0.2/0.1/5 0.2/0.1/5 0.2/0.1/5 

4 0.2/0.1/4 0.2/0.1/5 0.2/0.1/5 0.2/0.1/5 0.1/0.1/5 

5 0.2/0.1/4 0.2/0.1/5 0.2/0.1/4 0.1/0.1/5 0.1/0.1/5 

 

5 Identification stochastic loads 

Consider a two-dimensional elastic structure (plane stress) with prescribed boundary conditions 

(Figure 2). The following parameters of the structure: (i) geometry, (ii) material properties and 

(iii) boundary conditions, can be modelled by using the stochastic approach. In this example 

loads ( )
i

X γ  i=1,2,..,n, are random variables. The rest of the parameters are deterministic. 

 

 

Figure 2. The elastic structure under random loads 
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The displacement ( , )γU x  is the stochastic field, which is the solution of the boundary value 

problem of linear elastostatics [13]. This field can be found by using the Stochastic Finite 

Element Method (SFEM) [8] or the Stochastic Boundary Element Method (SBEM) [4]).  

In the case of the SFEM, the displacements are obtained by solving the system of random 

equations: 

 

 ( ) ( )γ γ=AU X  (32) 

 

where: A  – the stiffness matrix, ( )γU – the vector of nodal displacements, ( )γX – the 

vector of random loads.  
The problem of the identification of stochastic loads ( )

i
X γ  i=1,2,..,n, on the basis of the 

stochastic displacements measured in the boundary sensor points k=1,2,..,N, is considered. 

From the mathematical point of view, the identification problem is expressed as the 

minimization of a special stochastic function: 

 

 ( ) ( )( ) ( ),F dγ ϕ γ
∂Ω

= ∂Ω∫ U x x  (33) 

 

where ( ),γU x is a random displacement field on the boundary ∂Ω. 

The integrand ϕ  is expressed as follows: 

 

 ( )( ) ( ) ( ) ( )
2

1

, , ,
N

k

k

ϕ γ γ γ δ
=

 = − − ∑U x U x U x x x
�

 (34) 

 

( ),γU x
�

 - measured random displacements in sensor points 
k

=x x , k=1,2,..,N,  

δ - Dirac function. The formula (33) can be transformed to the simpler form: 

 

 ( ) ( ) ( )
2

k k

k

F γ γ γ = − ∑ U U
�

 (35) 

 

where: ( ) ( ),
k k

γ γ=U U x . 
 

The aim of this test is to find n=2 random loads: 
1
( )X γ  and 

2
( )X γ  (Figure 3). The actual 

stochastic parameters of the load 
1
( )X γ  is described by: 

1 1 1
=( , )m σg , where: 

1
m =10.0 [kN], and 

1
σ =0.167 [kN]. The actual stochastic parameters of the load 

2
( )X γ  is described by: 

2 2 2
=( , )m σg , where: 

2
m =15.0 [kN], and 

2
σ =0.167 [kN]. The loads are independent random 

variables.  

The stochastic chromosome 
1 2

( ) [ ( ), ( )]X Xγ γ γ=X  is replaced by a deterministic one 

containing moments of ( )iX γ  [ ] [ ]1 2 1 1 2 2
; ( , );( , )m mσ σ= =chr g g .  

As the sensor points N=21 boundary nodes were selected (Figure 3a).  

The following parameter values of the stochastic evolutionary algorithm were assumed: the 

mutation probability pro_mut=0.4, the crossover probability pro_cro=0.1, the population size 

pop_size=5, the number of generations was equal to 500.  

25 independent experiments were performed. The results (worst, average and best) are 

included in Table 4. 

 

 

 

 



 

a) b)  

Figure 3. The 2-D elastic structure: a) the sensor points (gray points), b) the SFEM model. 

Table 4. The found moments of the random loads 

The moments of random loads Results 

1m  [kN] 
1σ  [kN] 

2m  [kN] 
2σ  [kN] 

worst 9.876 0.183 14.854 0.153 

average 10.007 0.163 15.015 0.167 

best 10.000 0.167 14.990 0.169 

6 Conclusions 

An effective intelligent technique based on the stochastic evolutionary algorithm has been 

presented. This approach can be applied in the optimization and the identification of systems that 

are in random conditions. This approach is very promising for reliability optimization in which 

the safety of a system is estimated and represented by the probability of its failure, i.e. the 

occurrence of an ultimate limit state manifesting itself. 

The future task is testing the influence of the parameters on the sensitivity of the algorithm: 

the parameters of the evolutionary algorithm (the number of individuals, the probability of the 

operators), the control parameters of the selection (the probability of the comparison of two 

stochastic numbers). Coupling with the gradient method will be considered. The two-stage 

strategy will be taken into account. This approach has been applied for a real value problem and 

the fuzzy value problem [7] and the results have been satisfactory. The special type of the 

stochastic ANN can be applied for the computation of the sensitivity of the stochastic fitness 

function. 

More general approaches will be developed in future. Other types of PDF functions with  

a greater number of moments will be examined. The dependences between random numbers will 

also be examined. 

In the general case uncertain conditions have the granular form [2]. Models based on interval 

and fuzzy numbers were used instead of the stochastic approach presented in this paper. Models 

based on perturbation numbers will be presented in the future. 

X1(γ) 

 

X2(γ) 

 



The granular evolutionary algorithm can be created as a general method for all models 

described. 
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