
Non-Deterministic Finite State Automata
Built on DNA

Robert Nowak1 and Andrzej PÃlucienniczak 2

1 Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland,
email: r.m.nowak@elka.pw.edu.pl

2 Institute of Biotechnology and Antibiotics, Staroscinska 5, 02-516 Warsaw, Poland,
email: apl@iba.waw.pl

Abstract. This paper describes non-deterministic finite-state automaton based
on DNA strands. The automaton uses massive parallel processing offered by
molecular approach for computation and exhibits a number of advantages over
traditional electronic implementations. This device is used to analyze DNA mole-
cules, whether they are described by specified regular expression. Presented ideas
are confirmed by experiment performed in genetic engineering laboratory.

1 Introduction

The method described in this paper uses DNA (deoxyribonucleic acid) molecules for
performing computation. The double helix of DNA is formed from two separate DNA
strands, connected together (head-to-toe) by hydrogen bonds. The DNA strands may
be viewed as chain of nucleotides. There are four nucleotides: adenine, cytosine, gua-
nine, and thymine, abbreviated to A, C, G, and T respectively. Each strand has a natural
orientation, denoted (according to chemical convention) as 5’ and 3’ end. The hydrogen
bond is selective, A bonds with T, and G bonds with C, the pairs (A,T) and (G,C) are
complementary. The DNA strands are complementary if they are built from complemen-
tary nucleotides. More information about DNA and basic operations (i.e. hybridization,
denaturation, ligation, cutting, PCR) from computer scientists point of view should be
found in [1, 4, 5].

Symbol over some alphabet Σ, denoted in this paper by a small letter or digit, is
represented by sequence of consecutive nucleotides of length n. For different symbols
these sequences are different. In this work such sequences are written from 5’ to 3’
end. The x̄ denotes the sequence complementary to sequence representing symbol x, for
example, if x is represented by ATCCCA, the complementary sequence is 3’-TAGGGT-5’,
thus x̄ is TGGGAT.

An alphabet is a finite nonempty set of symbols. A string over given alphabet is
any finite sequence of symbols (for example ε, a, b, aa, ab, aab, are the strings over
Σ = {a, b }, ε represents empty string). The length of a string R (the number of symbol
occurrences in R) is denoted by |R|, for example, |aab| = 3, |ε| = 0. The strings are
represented by DNA strands, and denoted in this paper by capital letter. For example,
consider the alphabet Σ = {a, b}, where symbols are represented by ATCCCA, GGTCCT
respectively. The DNA strand for R = abb has sequence ATCCCAGGTCCTGGTCCT.

Each subset of strings over given alphabet is called a language . Regular expression
is a useful way to describe some simple languages called regular languages.

For any regular expression the equivalent right-linear grammar can be constructed.
The right-linear grammar is quadruple G = (N,T,P, q0), where N is nonterminal
alphabet, T is terminal alphabet T ⊆ Σ, q0 is the starting symbol (axiom) q0 ∈ N,
and P is the set of production rules. Production rules conform the pattern 1 → a2 or
1 → a, where 1 ∈ N, 2 ∈ N and a ∈ T. The construction of right-linear grammar for
given regular expressions is described in [3]. In this work numbers denotes nonterminal
symbols, letters denotes terminal symbols.

The decision whether a given string belongs to a given regular language is undertaken
by finite state automaton . The finite state automaton can be constructed [3] for
any regular language. If the length of regular expression describing given regular lan-
guage is |R|, then simple algorithm (of linear time complexity for electronic computer)
can construct non-deterministic finite state automaton. The number of states (memory
complexity) is O(|R|), and time complexity to analyze string X is O(|R| ∗ |X|). The de-
terministic finite state automaton has the number of states exponentially dependent on
length of regular expression, so memory complexity is O(2|R|), and the analysis for string
X takes O(|X|) steps. A sample finite state automaton is depicted in Fig. 1. The automa-
ton recognizes strings belonging to language a(a|b) ∗ b. The grammar G = (N,T,P, q0),
where N = {0, 1}, T = {a, b}, q0 = 0, and P showed in Fig. 1 generates strings belonging
to language.

0 1 2
a

a

b

b

• 0 → a1
• 1 → a1
• 1 → b1
• 1 → b

Figure 1. Finite state automaton and production rules for language a(a|b) ∗ b.

The idea described in this paper is to build non-deterministic finite state automaton
in vitro. Such a device uses massive parallelism given by molecular approach, and has
size complexity (understood as a number of different molecules) O(|R|), where R is
regular expression describing given language. The analysis for string X has O(|X|) time
complexity.

2 Molecular production

The molecular production is a biological system which conditionally creates designed
DNA strand. It is the basic element in molecular automaton used to implement transi-
tion.

The molecular production, denoted A → B, creates string XB if and only if the
input is XA (A, B, X are sub-strings, |A| > 0). Such system checks if the sequence
of nucleotides representing condition (here A) is presented at the 3’ end of the input
string, and then creates the output string: the DNA strand is copied from input, but the
condition sequence is replaced by sequence representing result of production (here B).
Therefore, for input XA, the XB is obtained (Fig. 2). It should be mentioned, that XA
is also presented in the output, because input and output are not separated.

If the strand representing input string has not the condition sequence at the 3’ end,
the molecular production creates nothing. For example production A → B for input
XC, where C 6= A, provides only XC (Fig. 2).

Molecular
productionInput string Output string

A->BXA XB,
XA

A->BXC XC

Figure 2. Molecular production A → B; X, A, B, C are strings, and |A| > 0, A 6= C.

3 Molecular finite state automaton

Reductions for right-linear grammars

Theorem: If string S belongs to language generated by right-linear grammar G =
(N,T,P, q0), then can be reduced to string q0 (axiom). The following reduction rules
are used for the last symbols in a string:

• a → 0 when 0 → a ∈ P,
• a1 → 0 when 0 → a1 ∈ P.

Lemma: When string is generated from axiom (q0) by right-linear grammar it has at
most one non-terminal symbol. This is the last symbol of the string.

Proof of lemma (mathematical induction): Assume, that Sn = w1w2...wnAn,
where wi ∈ T , An ∈ N . Sn+1 should be obtained from Sn by production An →
wn+1An+1 (it retain the condition) or by production An → wn+1 (also retains it).

Generated strings are: q0 → w1A1 → w1w2A2 → ... → w1w2...wn−1An−1 →
w1w2...wn, where wi ∈ T , Ai ∈ N .

Proof of theorem: String Sn = w1w2...wn can be generated by right-linear grammar
G = (N,T,P, q0), only from string Sn−1 = w1w2...wn−1An−1, where An−1 → wn ∈ P.
Therefore strings Sn−1 can be constructed from Sn by reductions wn → An−1. If P
does not contain production rule An−1 → wn, then string w1w2...wn does not belong to
language generated by G.

String Sn = w1w2...wnAn can be created only from strings w1w2...wn−1An−1, where
An−1 → wnAn ∈ P. If production rule An−1 → wnAn 6∈ P, then string Sn =
w1w2...wnAn does not belong to language generated by G. Strings Sn−1 are constructed
from Sn by reductions wnAn → An−1. Because |Sn−1| = |Sn| − 1, after n− 1 steps, the
set of strings of length equal 1 is obtained. If the axiom (q0) is in this set, the string
w1w2...wnAn can be generated by G.

Molecular automaton based on reductions

For given language the corresponding right-linear grammar is constructed [3]. To
analyze the input string the reductions (described in theorem) are performed. If the
axiom (starting symbol) is obtained the input string belongs to grammar (is accepted).

k = | word |

TRUEFALSE

YES

NO

molecular
productions

detection

YES

NO

separation

Figure 3. Molecular automaton - algorithm.

Such an idea is the core of molecular automation. This device takes advantage of mole-
cular production to implement reductions. The algorithm is shown in Fig. 3.

Firstly, the automaton is prepared and DNA strand representing the input string is
added to a vessel.

Then k steps (where k = |S|) of productions and separations are performed. After
each production the last symbols from the string could be reduced. The separation
removes input string (present in the output of molecular production), i.e. for input
XA and molecular production A → B only XB is kept. It should be noted that each

molecular production could work independently of each other, so in a single step many
different reductions should be performed.

Finally the axiom is detected. If such string is obtained, the answer is true, the input
string is accepted by automaton. Otherwise, the answer is false.

Example

Consider regular language a(a|b) ∗ b and the right-linear grammar shown in Fig. 1.
The reductions (molecular productions) for this language are: b → 1, b1 → 1, a1 → 1
and a1 → 0.

The molecular automaton performs 3 steps when the input string abb is analyzed:
abb → ab1 → a1 → {0, 1 }. The axiom (symbol 0) is present, thus abb belongs to
given language.

For bbb and the same automaton the reductions are: bbb → bb1 → b1 → 1. The
axiom is not present, so bbb is rejected.

4 Molecular production - realization

The molecular production is the basic element used to build the automaton considered
in this paper. Below the details of this process are presented.

X A

A

B

B X

X B

X A

Figure 4. Molecular production A → B. The production engine has sequence ĀB.

The process of molecular production (illustrated in Fig. 4) needs the DNA strand
called a production engine. This strand contains two parts: the first is complementary
to the conditional part of molecular production (i.e. Ā for A → B), the second has
nucleotides representing the result of production (i.e. B for A → B).

Firstly, the production engine partially hybridizes to the input string (only if it has
the proper sequence on 3’ end). Next, the special polymerization with DNA polymerase

“jump” is performed. A strand built by polymerase has the sequence complementary
to the output string. Finally, the polymerization is performed, so the output string is
produced. It should be noted that if the hybridization does not occur (the production
engine and input string are not partially complementary), polymerase does produce only
strand complementary to production engine, which can be easily removed.

The probability of DNA polymerase “jump” is very small, so in experiments the PCR
is applied. PCR (and dilution) can also remove the strands representing input strings
(separation in Fig. 3).

5 Molecular automaton example

The molecular automaton (described in section 3) is represented in vessel by a set of pro-
duction engines. For language a(a|b) ∗ b these molecules are depicted in Fig. 5. For the
considered language there are 4 productions, the sequences correspond to reductions:
a1 → 0, a1 → 1, b1 → 1 and b → 1 respectively.

5’ 3’
end end1 a 0

5’ 3’
end endb 1

5’
end end1 b 1

3’

5’ 3’
end end1 a 1

Figure 5. Molecular automaton (molecular engines) for language a(a|b) ∗ b.

The DNA strand representing a model string aab is shown in Fig. 6. As denoted
previously there are sequences representing symbols, and some temporary ones, denoted
start, end, used as primers.

5’ 3’
start endba b

Figure 6. DNA strand representing a model word abb.

At the beginning of calculations the molecules implementing automaton (production
engines) and input string are put into a vessel. Next the molecular productions are
performed (firstly the hybridization, next polymerization with “jump”, then denaturation
and finally polymerization, like in section 4). Because of the length of string aab, three
steps of molecular production and separation are performed.

The first step is schematically depicted in Fig. 7. The production engine representing
reduction b → 1 bonds to strand working as input string (the reduction b → 1 is called
to be active). The other engines are not bounded, so after molecular production and
separation in the vessel the molecule corresponding to aa1 string were presented.

In the second step, depicted in Fig. 8, the reduction a1 → 1 is active, and the string
a1 is obtained.

5’

3’5’

3’

start endb

endb

a b

1
e

n
d

5’ 3’
start endba b

5’ 3’
start end1ba

Figure 7. Examine string aab (for language a(a|b) ∗ b). Step 1.

5’ 3’
start end1ba

5’
5’

3’

3’

start end1b

end1b

a

1
e

n
d

5’ 3’
start end1a

Figure 8. Examine string aab (for language a(a|b) ∗ b). Step 2.

The third step (Fig. 9) shows parallelism of the described approach. The two re-
ductions are active: a1 → 0 and a1 → 1. So the two different molecules were created:
molecule representing string 0 and 1 respectively.

5’
5’
3’

3’

start end1a

end1a

0
e

n
d

5’ 3’
start end0

5’

3’

5’

3’
start end1a

end1a

1
e

n
d

5’ 3’
start end1

5’ 3’
start end1a

Figure 9. Examine string aab (for language a(a|b) ∗ b). Step 3.

Finally, the detection is performed. It is done by checking if the molecule representing
the axiom (string 0 here) is presented in the vessel. Because such DNA strand is produced
in the third step, then answer is true. The string aab is accepted by the molecular
automaton.

6 Conclusion

The short comparison between complexity of different finite state automata is presented
in Tab. 1. The molecular approach has advantages over electronic implementations,

automaton size time
electronic nondeterministic O(|r|) O(|r| ∗ |S|)
electronic deterministic O(2|r|) O(|S|)
molecular O(|r|) O(|S|)

Table 1. Complexity finite state automata described by regular expression r when the string
S is analyzed. Size for molecular automaton is the number of different molecules used for
calculation.

because each possible transitions from a given state are simultaneously considered (take
advantage of massive parallel processing).

There are a few others works describing realization an automata by using the molec-
ular approach. In [5] only propositions are given, in [6] the human assistance is needed.
The described method uses one vessel to code many states (because implements non-
deterministic automaton), and the person reads the current symbol from the input string,
and decides to which vessel the molecules should be added (simulating transition). It
complicates the experiments and makes the process slower, more expensive and much
prone to errors. The interesting idea shown in [2], which uses Fok I enzyme, was ex-
perimentally proved. The main disadvantage of this method is small maximum number
of states and transitions (256).

The presented non-deterministic finite state automaton can be treated as an alter-
native way of performing molecular computation. It is the step toward constructing
molecular computer.

Practically, it might be used in biological and medical research, for searching DNA
sequences described by regular expression. When a requested sequence is simple (can
be described by regular expression), described non-deterministic automaton perform this
task quickly and inexpensively (compare with currently used DNA sequencing), so for
example the diagnosis of a genetic disease should be performed on a large scale.

Bibliography

[1] M. Amos. Theoretical and experimental DNA computation. Springer, 2005.

[2] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro. Program-
mable and autonomous computing machine made of biomolecules. Nature, 414:430–
434, 2001.

[3] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison Wesley, 1979.

[4] K. Lila, R. Kitto, and G.Gloor. A computer scientist’s guide to molecular biology.
Soft Computing, 5:95–101, 2001.

[5] G. Păun, G. Rozenberg, and A. Salomaa. DNA Computing: NewComputing Para-
digms. Springer, 1998.

[6] J.A. Rose, Y. Gao, M. Garzon, R. C. Murphy, R. Deaton, S. Franceschetti, and
E. Stevens Jr. Dna implementation of finite-state machines. In 2nd Anneal Genetic
Programming Conference, Morgen Kaufmann, pages 160–165, 1997.

