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Abstract. The paper is concerned with computational research for complex
systems. The simulation-based optimization approach, which is widely used in
applied science and engineering, is formulated and discussed. The numerical tech-
niques that optimize performance of system by using simulation to evaluate the
objective value are reviewed. The focus is on random search and metaheuris-
tics. The practical example - application of simulation optimization to calculate
the optimal decisions for controlling the river-basin reservoir system during flood
period is presented and discussed.

1 Introduction

Traditionally, the complex optimization problems are solved using linear and nonlinear
techniques, which normally assume that the performance function and the set of admissi-
ble solutions are known in analytical form. In many practical contexts, the optimization
problems cannot be described analytically due to the natural complexity and uncertainty
of the real-life systems. The load of mathematical and practical knowledge put to the
model results in numerous formulas whose solution can be obtained only numerically.
Computer simulation is a standard tool for understanding and predicting the behavior of
a system under the influence of various realistic and stochastic input scenarios. Although
simulation has traditionally been viewed as an approach of last resort, recent advances
in computer hardware and software have made it one of the most popular technique
to attack many real-life problems. In recent years we can observe a rapid growth of
simulation-based optimization (or simulation optimization) which merges optimization
and simulation technologies, [3, 5, 18]. We can formulate the definition:

Definition. Simulation optimization is a search or optimization technique that uses the
simulation experiment to evaluate the expected performance of the system for each set of
decision variables (system inputs).

Let us consider an example:
Example: A river-basin system. It consists of a net of rivers and retention reservoirs
located on tributaries to the main river. Our goal is to develop the system controlling the
operation of the reservoirs during flood periods. The idea is to achieve the coordination



of reservoirs in minimizing the flood damage created by a flood wave passing through the
river basin. We can formulate the problem to be optimized - flood damage minimization:

min
x∈X
J(x) (1)

where x denotes vector of outflows from the reservoirs (controls) and J flood damage
related to the high water levels in the considered river-basin. To calculate the optimal
values of outflows from the reservoirs the expected damages related to the proposed de-
cisions have to be computed. Taking into account the description of the system to be
controlled (nonlinear, complex models of flow transformation through the river basin,
limited knowledge regarding future inflows, constraints on the reservoirs capacity and re-
leases, many decision units and, at the same time, many different individual objectives,
etc.) we cannot define the analytical form of the performance function. The only viable
option is to perform the simulation experiment for forecasts of the future inflows to the
system. So for every optimization step it is necessary to calculate the expected value of
the performance, i.e., J in (1). So, the simulation optimization scheme as presented in
Fig. 1 is proposed to solve the problem.

Figure 1. Simulation optimization scheme for control decisions calculations in operational
control.

2 Simulation optimization problem formulation and discussion

In the context of simulation optimization, a simulation model is a function, S : Rn → R
m,

mapping input parameters, x ∈ R
n, to outputs, y ∈ R

m. The explicit form of the function
S is usually unknown. Its numerical representations (sets of y) that are the results of
simulation experiments performed for various input parameters x are called response
surfaces. We can formulate the general problem of optimization through embedded
simulation

min
x
[f(x) = Ψ(x, S(x))] , x ∈ Dx (2)



In the above formula Ψ : R
n+m → R is a performance measure calculated for sim-

ulator responses y = S(x) for input variables x, and Dx specifies the constraints on
the input variables. So, in this context the role of the simulator (simulation model) is to
transform input parameters x into outputs y used to calculate the performance measures.

The optimization problem (2) is usually nonlinear, often non-convex and gradient
information is rarely available. The features that complicate the task are the demand
that the solution is globally optimal and the constraints may be formulated both with
decision variables (simulator inputs x) and the responses y. If the constraints depend
only on input variables x the feasible trial solution can be checked before the simulation
execution, otherwise the feasibility of the new trials is not known before running the
simulation experiment. Additionally the constraints provided explicitly are accompanied
by a number of implicit constraints – defined on the internal variables of the modelled
system. Hence, it is difficult or even impossible to asses whether the domain Dx is convex
and compact.
As abstractions of real-life systems operation, simulators have limits of credibility.

Such limits may result from simplifications in the mathematical modelling and its com-
puter implementation, the omission of some possible values of inputs and the random
effects in the considered system (for example uncertain system – environment interac-
tions). Assume that vector V = [ϑ1, . . . , ϑm] represents the amalgamation of many
individual random effects in the simulator. The simulator response for decision variables
x and random effects V are calculated as y = S̃(x, V ), where S̃ denotes a simulation
model considering the random effects in the simulated system. The sample realization
of the performance function calculated from running the simulation is denoted by q. Let
us formulate the stochastic simulation-based optimization problem

min
x

[

f(x) = E
{

q(x, V ) = Ψ(x, S̃(x, V ))
}]

, x ∈ Dx (3)

In the above formula f represents an average performance measure over all possible val-
ues of V at the specified x.

We can distinguish two situations concerned with the type of influence on the system
by the inputs x:
A: Inputs x effect directly the outputs y and does not influence the random vector V .

The performance function in (3) can be calculated as follows:

f(x) = E{q(x, V )} =

∫

Dv

q(x, v)p(v)dv (4)

where p(v) denotes the density of probability distribution of V , and Dv the domain
of V .

B: Inputs x enter via their effect on the probability distribution of V . In this case the
performance function in (3) can be calculated as follows:

f(x) = E{q(x, V )} =

∫

Dv

q(x, v)p(v|x)dv (5)

where p(v|x) denotes the density of probability distribution of V .



It is useful to distinguish both presented types of input parameters when gradient
optimization methods are considered. It is proved in [18] that in the case of variant A
the infinitesimal perturbation analysis (IPA) method is used to estimate the stochastic

gradient ∇f̂(x)1, in the case of B the likelihood ratio method (LR) is applied, for both
types of inputs (variant A and B) IPA/LF is used.

IPA: ∂q(x,V )
∂x
,

LR: q(V )∂ log p(V |x)
∂x

= q(V )
p(V |x)

∂p(V |x)
∂x
, p(V |x) > 0,

LR/IPA: q(x, V )∂ log p(V |x)
∂x

+ ∂q(x,V )
∂x
.

In conclusion, simulation optimization is generally complex but seems to be the only
viable option to solve many practical engineering problems. The restrictions are caused
by the demands on computation time. The efficient optimization process requires a large
number of iterations and the system performance evaluations. For every iteration of the
optimization algorithm we have to perform time-consuming simulation experiment (see
Fig. 1), which for some sets of inputs does not always finish successfully.

Figure 2. Metamodel application to optimization; x∗ – the best (current) solution, Ψ – the
performance obtained based on simulation, Ψ̂ – the performance obtained by evaluating the
metamodel, ǫ - assumed accuracy.

The direction, which should bring benefits is parallel computing where the whole task
is partitioned between several processors. Parallel implementation allows us to reduce
the computation time, and to execute large simulation programs which cannot be put on
a single processor.
Another approach to reduce the computational load and at the same time the time

of calculations, is the use of metamodels. A metamodel is used in the optimization to
estimate performance in (2) or (3) instead of the simulation model. It approximates
the response surface of S function and the performance measure Ψ corresponding to
the simulation model. It is often used as a filter the goals of which are to predict
the performances for new trial solutions, compare them with the current best known
one and eliminate low quality solutions from further consideration, see Fig. 2. In such
approaches the decision concerned with trial points rejection is a trade off between the
speed and accuracy of the search. The popular techniques used to build metamodels are:
linear and non-linear regression, neural networks, etc. Unfortunately, the metamodel

1This expression is called a stochastic gradient because it is noisy measurement of the gradient (it
depends on the random effects V ).



implementation usually requires a lot of measurements and has proved to be costly in
many real-life applications.

3 Practical Approaches to Simulation Optimization

Many optimization techniques that could be employed for solving complex optimization
problem (3) have been reported. The classical approaches for optimizing simulations and
their applications are discussed in [3, 5, 18].
We can distinguish several approaches for optimizing simulations:
• stochastic approximation (gradient based approaches),
• sample path optimization,

• response surface methodology,
• deterministic search methods,

• random search methods,
• heuristics and metaheuristics.
A Stochastic approximation is the well known gradient search method that is similar

to steepest descent gradient algorithm. The procedure requires a gradient estimation.
The computer simulation is applied to obtain estimates of the gradient The simplest way
is to use finite differences and multiple simulations to calculate the derivatives of the
expected performance of the system. Another approach is to apply perturbation analysis
(IPA) or likelihood ratio method (LR). These techniques require only single simulation
run at one set of inputs but involve differentiating in equations (4) or (5) directly. Is
seems that the simulation outcome has to contain gradients evaluations. Both approaches
mentioned have advantages and disadvantages that are discussed in detail in [5] and [18].
For every iteration stochastic gradient algorithms need a simulation run to calculate

the gradient value (K iterations require at least K experiments). In the sample path
method the original problem is converted into an approximated deterministic problem.
The approximation f̂ of objective f is calculated based on simulations performed for
random generated set of independent observations V , i.e., V1, V2, . . . VM , M 6= K known
as sample path. Then the standard optimization algorithms are applied to locate the
optimal solution. In the case when cumulative distribution function of the random vector
V does not depend on inputs x optimization problem (3) is transformed to:

min
x

[

f̂(x) =
1

M

M
∑

i=1

q(x, Vi)

]

(6)

A response surface methodology is a sequential strategy based on local approximation

F (x, α) of the performance f in the neighborhood D
(k)
x of x, where the parameters α are

calculated using simulations, k is a iteration number. The minimal value of F (x, α(k)) is
calculated. The process is repeated unless the acceptable solution is found. The idea is
similar to approaches with metamodels application but in this method the metamodels
are used to characterize the objective function in the local, currently explored area.
Standard deterministic search techniques [16], i.e. algorithms developed by Hook and

Jeeves, Rosenbrock or nonlinear simplex (as Nelder and Mead) or complex methods can
be applied to solve non-differentiable simulation optimization problems.
As result of the growing possibilities of modern computers, we can observe increas-

ing interest in the development of the global algorithms that are concerned with the



computation and characterization of global optima of non-convex functions. During the
last decades many theoretical and computational contributions helped to solve multiex-
treme problems. Global optimization methods are widely used in many industrial and
scientific applications. Their approach to simulation optimization is based on viewing
the simulation model as a black box function evaluator. These approaches are flexible,
robust and less demanding properties of the problem. Many of them are constituted
by the stochastic algorithms typically based on random search, [18, 19]. Monte Carlo
techniques, multi-start local search and Adaptive search methods, like Controlled Ran-
dom Search CRS [1, 2, 17] belong to this category. Most of the global techniques utilize
heuristics and do not guarantee the optimum solution, but rather provide a reasonable
solution in a reasonable time. Genetic Algorithms GA [8, 9, 11], Evolutionary Strate-
gies ES [4, 11, 12], Simulated Annealing SA [6, 10, 12], clustering techniques [19] and
Tabu search [7] are all of a heuristic nature. Nowadays application of heuristics and
metaheuristics to simulation optimization problems is very popular [3].

4 Case study: Vistula river reservoir system

The presented case study is related to hierarchical control structure for flood operation
in the Upper Vistula river-basin system in the Southern part of Poland. The system
consists of three reservoirs Tresna, Dobczyce and Rożnów, located on tributaries to the
Vistula river, and of three uncontrolled side inflows. Simulation-based optimization is
applied by the central authority of the system to calculate parameters coordinating the
management of the reservoirs.

4.1 Problem formulation

The optimization problem to be solved was described in the example presented in
section 1. It is defined as the problem of minimization the flood damage J related to the
peak flows at the measurement points in the whole river system:

J(Q[t0,tf ]) =
K

∑

k=1

βkmax(Q
cul
k −Q

limit
k , 0) (7)

In the formula (7) Qlimitk denotes highest safe discharge at the k-th damage center (with
respect to protection of banks and flood damage), Qculk the peak discharge, Qculk =
maxt∈[t0,tf ]Qk(t) for k = 1, . . . ,K, where [t0, tf ] is the control horizon and Qk(t) flow at
the k-th damage center at time t; βk denotes the weighting factor related to the flow at
the k-th damage center (different points have different importance); and K the number
of damage centres.

The hierarchical control mechanism for reservoirs management was investigated. This
mechanism is based on the use of the repetitive optimization of the outflow trajectories,
using the predicted inflows – forecasts; see [14, 15] for details. It incorporates two decision
levels each as presented in Fig. 3: the upper level with the control center (coordinator) and
the local level formed by the operators of the reservoirs. Within this structure, the central
dispatcher performs an analysis of possible future scenarios of the flood and determines
the optimal vector of coordinating parameters a influencing local operator decisions about



the outflows from the reservoirs solving the optimization problem mina∈A J(a ∈ A),
with J defined in (7). The local decision rules are designed in such a way that a central
authority, the coordinator, may adjust them in the process of periodic coordination, so
as to achieve the coordination of reservoirs in minimizing global damage. It is assumed

Figure 3. Two-level control structure for controlling the Vistula river-basin system.

that the vector ai of coordinating parameters for the i-th reservoir, i = 1, 2, 3, considered
at time tl is related to the weighting function αi(t) defined as follows: αi(t) = 1 + (ci −
1) · (t − T ∗i ), i.e. αi(t) = 1 for t ∈ [tl, T

∗
i ) and αi(t) = ci for t ∈ [T

∗
i , tf ]. Finally, the

vector ai is given as ai = [ci, T
∗
i ].

Calculated parameters are used to modify the local performance measures qi =
max(xi(t)) for t ∈ [tl, tf ], i.e., the damage created by high water levels directly down-
stream of the reservoirs; where, t ∈ [tl, tf ] denotes local level optimization horizon. Hence,
the decision problem of the i-th local reservoir operator at time tl is as follows:

min
ui

[

qi,mod(ui(·),ai) = max
t∈[tl,tf ]

(ui(t) · αi(t))

]

(8)



In the calculation process performed by the central operator two phases can be dis-
tinguish: optimization and simulation. At every optimization step the value of dam-
ages is estimated based on the outputs of the simulation process. The optimization is
realized as follows: after assuming certain values of parameters a, simulation of the
reservoirs operation and flow transformation in the whole river basin until the pre-
dicted end of the flood tf is performed. The implicit constraints on the capacity w
and outflows x from the reservoirs have to be concerned during simulation process:
wimin ≤ wi(t) ≤ wimax , where wimin and wimax minimal and maximal capacity, i–
th reservoir number, ximin(wi(t)) ≤ wxi(t) ≤ ximax (wi(t)), ximin and ximax minimal
and maximal outflow, and additional for the desirable final storage of the reservoirs:
wi(tf ) = wf . The simulation responses are expected flow trajectories in the considered
measurement stations in the river basin. Then, the value of the overall performance index
J related to the given vector a is computed. The optimization simulation algorithm for
optimal coordinating parameters calculation is presented in Fig. 4.

Figure 4. Simulation-based optimization algorithm for optimal coordinating parameters calcu-
lations (Vistula river-basin system).

Numerical experiments were performed for a set of data containing historical floods
and several hypothetical, so-called scenarios. The central operator performed optimiza-
tion of six parameters forming vector a, using four heuristic optimization methods -
deterministic and stochastic techniques. The first heuristic applied was deterministic, di-
rect search algorithm - Downhill Simplex Algorithm NM developed by Nelder and Mead.
Next, global optimization techniques – random search and metaheuristics were tested.
Many calculations were performed for every method. The question was how the global
algorithms influence the optimization results and thus influence the issues of the oper-
ation of a multireservoir system during flood. The most interesting numerical results



obtained for two historical floods that occurred in 1970, 1972 and one hypothetical sce-
nario of the flood are collected in Table 1. The table presents the best (i.e., the lowest)
and the worst (i.e., the highest) optimal values of J obtained during 10 runs of each
optimization algorithm and the reduction of the performance index with respect to the
Downhill Simplex Algorithm NM (Nelder-Mead’s).

The available numerical results indicate that the considered global optimization al-
gorithms, i.e., ES, CRS2 and CRS3 enable improvement in relation to the standard NM
simplex algorithm. In most cases, the best results were obtained by ES but the time
required to compute a solution was longer than in CRS methods. The CRS3 method
provided better results compared to CRS2. However, the reduction of cost with respect
to CRS2 method was not very big. In general, the global algorithms can improve the
efficiency of the control system being considered.

Table 1. Flood control optimization - different methods (A – the best result, B – the worst
result; /* – reduction of criterion with respect to NM method.

opt. SCEN 1970 1972
method. A /* B A /* B A /* B

NM 1587 1587 1989 1989 773 773

CRS2 1574 / 0,81% 1587 1892 / 4,87% 1907 765 / 1,03% 768

CRS3 1574 / 0,56% 1583 1877 / 5,61% 1892 764 / 1,17% 770

ES 1515 / 4,51% 1572 1773 /10,86% 1792 722 /10,81% 770

5 Summary

In this paper a brief review was made of the algorithms for solving simulation-based opti-
mization problems. The focus was on global techniques (random search and metaheuris-
tics). The results of the application of the random search and metaheuristic approaches
to solve complex real-world optimization problems were presented and discussed. The
algorithms for simulation optimization usually require a large number of iterations and
the performance evaluations. Each iteration is costly in the case of optimization through
embedded simulation Because of the complexity of the considered simulation model, it is
quite often inherently difficult to find a good estimate of the solution with a reasonable
number of function evaluations and calculation time. As was mentioned in section 2 the
direction, which should bring benefits is parallel and distributed computing where the
whole task is partitioned between several processors or machines, as described in [13].
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