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Abstract. This paper presents the idea of a meta-heuristics algorithm called Evolutionary 
Controlled Clustering Algorithm (ECCA) designed for implementation in simulation 
optimization. The method focuses on localization of function optima neighborhoods. A 
Evolutionary algorithm (EA) with soft selection and gene injection is used for finding 
basin of attraction. It operates over nodes of a grid created in a continuous parameter 
space. ECCA manipulates the grid density as well as the simulation accuracy. Clustered 
data is used for identification of the basin of attraction. Later, surrogate optimization is 
applied for local optima search. ECCA was optimized for operation in an uncertain and 
dynamically changing environment of simulation data. It was tested on the design of the 
shape of waveguide transition. The computer program can be executed concurrently on a 
multi-processor machine or on a grid of computers. 

1 Introduction  

Nowadays most engineers become aware of benefits resulting from evaluation of the appropriate 
solution in a reasonable time with reasonable accuracy. When the time taken to perform single 
characteristic valuation, or in other words objective function, is of the order of minutes, hours, 
days, … the total number of evaluations is limited by contract constraints. Also our financial and 
computer resources are limited. Resource restriction poses a special challenge to most global 
optimization methods, since those algorithms require from hundreds to some thousands of 
objective function evaluations [1,2]. In place of simulation data we may use the surrogate of 
objective function. It can be obtained by fitting the data evaluated from several results of 
simulation [3], available at the moment,  to a given response surface. The interpolating response 
surface can be created with the help of the stochastic process [4,5,6]. The computer program 
[2,7] based on the surrogate algorithm may decrease computation time several times. But not in 
all cases. See the analysis of the operation of the surrogate algorithm [7] presented in section 2. 
Resulting from this case the conclusion is simple. Instead of simulating accurately with large cost 
for optimization space we may apply an algorithm which starts from coarse simulation, 
increasing accuracy, while getting closer to the optimal solution. This wrinkle lies as a 
background to the Evolutionary Controlled Clustering Algorithm (ECCA), which is presented in 
section 3. EECA combines particular potential of EA as a tool for global optimization of noisy 
function (as reported in eg. [8]) with efficiency of function estimation.  



2 Application of surrogate optimization algorithm 

It is very hard to find a practical example of a real-world device suitable for an accurate 
simulation (though we need exact data for problem analysis) in a reasonable time. The testing 
method was carried out on the problem of adjusting the shape of the waveguide transition [2,9]. 
The waveguide is a section of a rectangular (in cross-section) pipe, which is used for guiding 
waves in the high frequency (microwave) range. The whole device consists of three sections of 
waveguide: input port (23 mm * 10 mm), middle section (23 mm * w) with varying length l and 
width w, and output port (23 mm * 6 mm). The parameter optimal values equal to 9.5 mm and 
7.8 mm for the length and the width respectively. 
Objective function, being absolute value of the reflection coefficient, is evaluated by solving 
numerically three-dimensional Maxwell Equations set [1], using a wave simulator package [9]. 
The area covering the considered device is decomposed into a set of small cube cells (process 
which is called meshing). Then electromagnetic fields are evaluated iteratively along the mesh 
with a fixed time interval. Discrete and iterative character of the algorithm limits overall 
performance. The accuracy of simulation result is regulated by a change of  mesh size. Mesh size 
decrement by a factor of two may decrease systematic simulation error four times. However 
simulation time will increase approximately 16 times. The comparison of necessary resources for 
waveguide transition is presented in the following table. Computation times are given for AMD 
Sempron 3000+.  

Table 1. Simulation parameters 

Mesh id. S A B Ref. D 
Mesh size 2mm 1mm 0.5mm 0.25mm 0.12 mm 
Run time 0.4s 3.2s 13.2s 1m 12m 
RAM size 0.5MB 1MB 4MB 23MB 460MB 

 

 
Figure 1. Objective function chart with simulation mesh size = 1 mm (A) 



The theoretical shape of the objective hyper-plane is smooth and convex. The shape of the 
simulator evaluated objective, as shown on Figure 1, embodies plenty of  “canyons”. Walls of the 
“canyons” are caused by the systematical error. Also some parasitic optima had appeared. 
Anyway we may still hope that the search landscape is locally smooth. 
The amplitude of the systematic noise decreases with improving simulation accuracy (compare 
Figure 1 and 2), but with unreasonable growth of execution time and with a need for more and 
more operational memory. Also, with growing amount of necessary computer resources the 
simulation process is more likely to hang up, crash or become unstable. So in practice we may 
never have certainty about simulation result. 
The meshing with mesh size = 0.5 mm (B) used for creation of chart presented on Figure 2 is 
recognized by field simulation practitioners as the best compromise between accuracy and 
resource utilization for the given example. It was used for algorithm tests. 

 
Figure 2. Enlarged optimum region with simulation mesh size = 0.5 mm (B) 

The evolutionary algorithm with response surface approximation [7] was applied for 
optimization. The profit is a reduced execution time of about 50%, compare to the EA or non-
gradient Powell method [9] . The solution with 1% accuracy was achieved quite quickly after 4th 
generation (40 function evaluation). However with growing number of generations the 
approximating function apparently becomes multimodal. The quality of estimator can be seen in 
Figure 3.The operation of the evolutionary algorithm was disturbed by the three and four local 
optima (in 4th and 8th  generation respectively). All that optima must have been verified with 
some computational effort. In total optimization quits after some hundreds of generations.  
The level of estimation error, received after 2nd generation is comparable in value to the 
simulation data. With growing number of simulation the overlay estimation performance gets 
better, but still efficiency of optimization process is not so good as it was expected. Also 
numerical effort, used for evaluation of estimator, increases exponentially. 
 



 
Figure 3. Estimation error after 2nd generation with simulation mesh size = 0.5 mm (B) 

The ridged shape of estimator error, and poor convergence make us suspicious about problem 
conditions. Let’s magnify objective surface and see whether all assumption concerning objective 
function are fulfilled. The cross section of the objective surface close to the global optima ( for 
width w = 7.8043 mm ) is shown by Figure 4. 
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Figure 4. Comparison of the objective function for three mesh sizes. 



The simulation error constitutes a quasi-periodic function with recurrent peaks. The period of the 
function equals the mesh size. The optima of the less accurate simulation B and A are shifted 
compared to the original by 2% and 0.6% respectively . Anyway we may still doubt the accuracy 
of our reference data. The comparison with “closer to reality” (set of points D) objective function 
view is presented in Figure 5. Further mesh size improvement seems to be unpractical. 

9.5 9.51 9.52 9.53 9.54 9.55 9.56 9.57 9.58 9.6

0.073

0.074

0.075

0.076

l[mm]

|S
11

|

Ref
D

 
Figure 5. Magnified optima surrounding. 

With magnified view we can observe that not only surface is a stepped like line distorted by large 
peak (see one on the left side of Figure 5), but there appear smaller ripples. So the principle 
constraint of the application of the response surface method, that the objective must be locally 
smooth and convex, is not fulfilled. The un-smoothness is presumably caused by the input/output 
data rounding, use of 32 bit numbers (64 and 80 bit numbers will at least double demand for 
computer memory) and some other unknown, at the moment, factors – lets call it numerical 
noise. With dense meshing (like D) we may ignore the influence of the numerical noise, but still 
quasi-periodic peaks may cause generation of parasitic optima on the approximation surface. 
Concluding, we may spend a lot of time for simulation, expend a lot of resources (that is hoped 
are available), with uncertain result. 

3 Evolutionary Controlled Clustering Algorithm 

The key issue in global optimization is the problem of finding a variety of basins of attraction of 
the optimum. And a side effect, which follows, is poor efficiency in the space exploitation by 
meta-heuristic and stochastic global optimization algorithms like simulated annealing, 
evolutionary algorithms, controlled random search and many others. These methods are rather 
capable of space exploration. Given either cluster covering optima or a set located close to one 
we may apply any local search algorithm for accurate location of the optima. During exploratory 
stage there is no need for a high simulation accuracy. Also, we may tighten function domain to a 
sparse grid. Later, during exploitation  the grid must be dense and simulation very precise. Also 
we must keep in mind that most of computational effort during local optimization is consumed 
by the final optimum location. At that stage we can take the advantage of surrogate optimization. 
Flowchart of the program is shown in Figure 6. 



The principle of operation of global simulation optimization algorithm, taking in consideration 
presented ideas, is constituted as follows: 
- first locate interesting areas (clusters) using global optimization algorithm, 
- then narrow observation horizon to the regular area surrounding given cluster, 
- increase observation resolution by making grid denser, 
- simulate function with medium accuracy over given grid, 
- evaluate locally function estimator, 
- find minimum of the estimation function as a starting point for further optimization, 
- minimize function locally using steepest descent algorithm with estimator utilization. 
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Figure 6. The flowchart of the program 



For initial cluster search we can use any global optimization procedure. With problems of 
relatively small dimensionality, as presented here, we can evaluate all objective values over a 
grid. It will still cost less than a single precise simulation. In general the µ + � evolutionary 
algorithm, with soft selection was chosen. The evolutionary operators are mutation with  
Gaussian distribution and linear recombination. Process starts with grid size = 0.5 mm and mesh 
size = 1 mm. Population size is set to  µ = 10 and � = 5. Presented EA in practice saturates after a 
couple of generations. Therefore the stop condition is defined as exceeding a generation count (5-
10) with no improvement of the best fitness. The  grid is then gradually decreased until 
predefined limit is reached (0.1mm). Meanwhile current population is overridden with 2� new 
randomly generated individuals and � is set to 2�. The injection with growing number of new 
points preserves population diversity. 
The population is looked through after every generation for clusters covering optima. The 
clustering algorithm is designed to find convex (in a discrete manner) sets of points located 
within some aperture. The aperture measure depends on current grid size and mesh size. The 
cluster points must fall inside some regular region (hyper-cube or hyper-sphere) of function 
domain and its value inside an interval whose limits depend on the best fitness and estimate of 
maximal systematic simulation error. After recognition of the cluster the algorithm starts 
(concurrently) local search. Firstly, values of the cluster grid nodes are simulated with medium 
accuracy. Secondly, for each mate of the cluster we locate minimum of the surrogate objective 
function. Finally the mentioned surrogate optima is used as a starting point by steepest descent 
direction algorithm with precise simulation. At the final stage the space grid is set to the value of 
manufacturing accuracy, typically 1 ,m. 
The comprehensive verification and comparison of simulation optimization algorithms is very 
difficult due to the high computational time, huge demand for resources and uncertainty of 
simulation. ECCA is in fact an improvement of some of existing methods [2,6,7,10]. It inherits 
its advantages and drawbacks. Several tests on examples attached to the QuickWave® simulator 
[9] proved that ECCA is able to find optimal solution in every case. Computational efficiency is 
arguable. In some cases ECCA was more efficient, in some cases not. However we must 
emphasize that dimensionality of examples was relatively low (2-4) with no more than 4 local 
optima. In some cases it was observed that accuracy of the solution in the first generation was 
good enough to start local search. Anyway we must point out that with increasing number of 
variables ECCA performs more efficient and reliable than the other methods.  Optimization of 
more sophisticated devices, with larger dimensionality, require more resources than available. 
Presumably a computer grid may help at the moment. However there is no available version of 
the simulator designed for a grid computing. 

4 Summary 

Evolutionary algorithm with response surface interpolation proved to be a smart and quite 
reliable tool for global optimization of expensive, simulator based function. However it can be 
efficiently applied only in cases, when systematic simulation error is neglible or can be 
compensated. Mentioned conditions hold only if we are able to use a very precise and reliable 
simulation. 
The Evolutionary Controlled Clustering Algorithm implements surrogate optimization in the 
place where it is most efficient – for exploitation. In the initial exploration we may significantly 
increase number of simulations taking full advantage of evolutionary algorithm. ECCA seems to 



be an efficient and reliable tool for simulation optimization. The main advantages of the method 
must be emphasized: 

• the source of the data is mostly a “like real world” simulation process, 
• simulation cost is relatively low, we can run simulation more times, 
• with some data redundancy we are able to neglect  uncertainty of simulation,  
• simulations and estimation can run concurrently, 
• synchronization of processes is not a critical issue. 
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