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Abstract. CRS (Controlled Random Search) algorithms for global optimization
are considered. The main objective is to present the advantages of developing
the parallel and distributed random search algorithms to search for the global
solution. A practical example, application of parallel CRS2, CRS4, CRS6, CRSI
algorithms and distributed CRS2 algorithm to calculate the optimal prices of
products that are sold in the market, are presented. In the final part of the
paper the results of numerical experiments performed on the historical data are
described and discussed.

1 Introduction

Random search methods have proved to be a robust way to find the global solution of
optimization problems defined as min f(x) for x ∈ X ⊂ ℜn, X = {x : ai ≤ xi ≤ bi}, i =
1, . . . , n with nonlinear, non-differentiable and also non-convex performances f , [2, 5, 9].
This class of methods is based on global exploration of the domain and localization of
search. The algorithms are easy to implement, do not require any properties of the
function being optimized and use the constant computer memory storage. They can
be applied with success to solving problems with noisy objective function values. All
these features result in the random search being widely used in applied science and
engineering. Unfortunately, random search algorithms are usually slow because they
require a large number of iterations and function evaluations to calculate the global
solution, so acceleration is worthwhile. The direction, which should bring benefits, is
parallel or distributed implementation where the whole task is partitioned between several
processors or machines.

In this paper the robustness and efficiency of parallel and distributed versions of
controlled random search algorithms are discussed. The numerical results of their ap-
plication to optimal price calculations are presented. The paper is organized as follows.
First it provides a short overview of several versions of controlled random search methods.
Second parallel and distributed implementations are described. Finally, the price man-
agement optimization problem is formulated and the results of optimizations performed
for historical data concerned with sales in the supermarket are discussed.



2 Controlled Random Search - Algorithms Overview

The Controlled Random Search methods (CRS) are population set based random search
algorithms. The basic random search consists of three main steps: 1) generate the initial
set of points P ⊂ X , 2) transform the population P , 3) check the assumed stopping con-
dition. In principle, CRS methods were designed as a combination of a local optimization
algorithm with a global search procedure. All CRS algorithms start from the creation
of the set of points P (much more than n + 1 points in n-dimensional space), selected
randomly from the domain X . Then the best xL (i.e., that of the minimal value of the
performance index) and the worst xH (i.e., that of the maximal value of the performance
index) points are determined. Next, new trial point xQ is calculated. Then finally, if this
point is admissible and better than xH it replaces the worst point xH in the set P , so
the initial population of trial points is modified.

Several versions of CRS methods related to different strategies of new trial points
calculations are available. They were developed by Price [7], Ali and Storey [1], Mohan
and Shanker [3]. Three versions CRS1 – CRS3 use the approach with nonlinear simplex
formulation and transformation. In CRS2 the nonlinear simplex is formed with the
best point xL and n points (x2, . . . , xn+1) randomly chosen from P . Afterwards, the
centroid xG of points xL, x2, . . . , xn is determined. The next trial point xQ is calculated,
xQ = 2xG − xn+1. Then, if the point xQ is admissible and better (i.e. f(xQ) ≤ f(xH)),
xQ replaces the worst point xH in the set P . Otherwise, a new simplex is randomly
formed and so on until the stop criterion is met, i.e. f(xH)− f(xL) ≤ ε, where ε denotes
the assumed accuracy.

The CRS3 algorithm is a combination of the CRS2 procedure with the local optimiza-
tion procedure based on the Downhill Simplex Algorithm of Nelder and Mead described
in [4]. The local algorithm is switched when a newly generated point in CRS2 fell within
the bottom one-tenth of the ordered array P . After completing the local search the global
search is continued. The CRS3 method tends to speed the convergence of the algorithm
with respect to CRS2. The local optimization procedure operates only on a small part of
set P and thus has a minimal effect on the global search performance of the CRS2 phase.
The local procedure can operate at any stage of CRS3. It is triggered automaticly but it
can be modified to permit the user to switch the local procedure in or out as required.

Another local techniques are introduced in versions CRS4 and CRS5. CRS4 evaluates
the value of performance f in m points from the β distribution, assuming the mean value
equal to the current best point xL and standard deviation equal to xH − xL. CRS5 uses
a gradient local search starting from xL. The quadratic interpolation (1) is used in CRSI
to generate the new trial point xtrial:
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where x1 and x2 are two points randomly selected from the set P , i denotes the i-th
coordinate of each point. CRS6 uses quadratic interpolation (1) and random generation
from the β distribution as in CRS4.



3 Parallel and Distributed Implementation of CRS Algorithms

3.1 Parallel Version

The CRS algorithms are not only quite simple and efficient, but also easily adaptable
to a parallel environment. The parallel versions of CRS2 and CRS6 were developed and
tested. The goal was to speed up the calculations. The numerical experiments were
carried out on the parallel machine with the help of the POSIX threads library. Several
calculation threads were executed. All threads operating in parallel transformed the
same, globally available population of points P . The current best point xL was global
for all calculation threads, while the worst points xH were local, one for each thread. The
additional thread (the main thread) was responsible for calculation threads initialization,
synchronization, communication and results presentation. The calculation structure is
presented in Figure 1.
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Figure 1. CRS - parallel implementation.

3.2 Distributed Version

The distributed version of the CRS2 method was developed to perform calculations in
computer networks. The goal was to improve the accuracy of the solution. The numerical
experiments were carried out on the network of Sun workstations. The implementation
was based on MPI (Message Passing Interface) library. Master-slave architecture was
applied. In the distributed versions of all CRS methods considered, several independent
instances (calculation processes) of algorithms were executed, each on a separate pro-
cessor. The additional process (coordinator) was responsible for calculation processes
initialization, inter-processes communication and calculations termination. In contrast
with parallel implementation each calculation process transformed its individual popula-
tion of points P . After each assumed number of iterations set by the user the calculation
process sents its local best point to the coordinator and took the best point currently
available in the coordinator process. Each process stopped the calculations after stop-
ping condition was met and sent its results together with the adequate message to the
coordinator process. The communication between coordinator and calculation processes
was asynchronous. The distributed implementation is presented in Figure 2.



Figure 2. CRS - distributed implementation.

4 Case Study – Price Management Problem

The goal of price management is to determine the optimal prices or a pricing strategy
that satisfies the firm’s objectives. Let us consider n products that are sold in the market.
Assume that x = [x1, x2, . . . , xn] denotes a vector of prices of n products; xi is the price
of the i-th product, and q = [q1, q2, . . . , qn] denotes a vector of expected sales within the
considered period; qi is the sale of the i-th product. The relationship between prices and
sales is called price response function S(x), defined as follows qi = Si(x).
We can formulate a price management problem. The goal is to calculate the optimal

prices for products that are sold in the market to maximize the long-term profit equal to
revenue minus cost

max
x=[x1,...,xn]

PRT (x) (2)

where PRT is the total expected profit within the considered period;
PRT (x) =

∑n

i=1 PRi(x) and PRi profit calculated for product i and n number of prod-
ucts exist (corresponding to n price decisions xi).
The value of profit strongly depends on the market response function. Several linear

and nonlinear market response models can be found in the literature, [6, 8]. All these
models describe market response for the price of the i-th product.
The popular measure of the impact of price on sales is the price elasticity. The

elasticity refers to the relation of a percentage change in sales volume to the percentage
change in price. Sales of a product depend on its own price and the prices of other
products. The first dependency is measured by the direct elasticity, the second by the
cross elasticity.
The elasticity is considered in multiplicative price response function that represents

the sales q as a nonlinear function of price x:

Si(x) = αi

n
∏

j=1

x
βij

j (3)



where xj denotes the price of product j, αi is the scaling factor for sales of product i, β
ij

is the elasticity of sales of product i with respect to the price of product j (βii is referred
to as the direct elasticity and βij , i 6= j is the cross elasticity). The curve defined by the
function xβ is convex for β < 0 or β > 1 and concave for 0 < β < 1.
Taking into account linear cost function and VAT the performance index to be max-

imized in (2) is given as:

PRT (x) =

n
∑

i=1

( xi

1 + vi
− di

)

Si(x) (4)

where vi and di are given constants corresponding to the market entities of VAT and cost
per product, Si are expected sales of the product i within the considered period defined
in (3), assuming that prices of all products are fixed over this period.
The following constraints for price, sale and cash of each product and for total sale

and cash can be considered:

xmini ≤ xi ≤ x
max
i i = 1, . . . , n (5)

Smini ≤ Si(x) ≤ S
max
i i = 1, . . . , n (6)

Cmini ≤ xiSi(x) ≤ C
max
i i = 1, . . . , n (7)

TSmin ≤

n
∑

i=1

Si(x) ≤ TS
max (8)

TCmin ≤

n
∑

i=1

xiSi(x) ≤ TC
max (9)

In the above constraints xmini and xmaxi denote minimal and maximal prices of product
i, Cmini , C

max
i minimal and maximal cash, TSmin, TSmax minimal and maximal total

sale, TCmin, TCmax minimal and maximal total cash.
In practice, usually prices of only some products are changed at anyone time. The

following constraint restricts the number of prices, which can be modified

n
∑

i=1

γ(xi − x
0
i )
2

1 + γ(xi − x0i )
2 ≤ w (10)

where γ and w are assumed parameters, x0i the current price of the product i.

5 Numerical Results

Multiple numerical experiments were performed for several sets of historical data obtained
from an IT company in Manchester, containing various groups of products offered in
supermarkets. The goal of optimization was to maximize the global profit as described
in (4) subject to constraints (5) – (10), with the sales response market model given by
(3). Controlled random search algorithms – CRS2, CRS4, CRS6 and CRSI (sequential,
parallel and distributed versions) were used to calculate the optimal prices. The size of
the considered optimization problems was restricted by the available sets of historical
data.



5.1 Sequential Version

The weakness of all CRS methods is the way in which the constraints of a type gj(x) ≤
0 are handled. The infeasible points are simply rejected from further consideration.
The suggested approach is to account for these constraints in the objective function
using simple penalty terms for constraints violation. The reformulation of optimization
problem min f(x) for x ∈ X ⊂ ℜn, X = {x : ai ≤ xi ≤ bi}, i = 1, . . . , n, gi(x) ≤ 0, j =
1, . . . ,m, is as follows:

min
x∈X
[f(x) + Φ(x)], Φ(x) = µ

m
∑

j=1

max
(

0, gi(x)
)p

(11)

where µ and p are parameters.

The optimization results of price management problem (2), considering two approaches
to infeasible points, and various sizes of the initial population P of points are pre-
sented in Tables 1, 2 and Figures 3, 4. The assumed population size was defined as
‖P‖ = NP · (n+ 1), where n denotes the problem dimension and the NP parameter is
defined by the user. The calculations were performed for NP = 10, 15, 20 and 25. The
assumed accuracy of optimal the point calculation was 1E-4.

Figures 3, 4 and Table 1 present the average results when prices for fifteen products
were calculated using CRS2, CRS4, CRS6 and CRSI methods, obtained during 5 runs
of each optimization algorithm. The bar diagrams in Figure 3 and Figure 4 show the
average number of performance function (4) evaluations and average calculation time.

Figure 3. Number of function evaluations and run time with infeasible points discarding.

Figure 4. Number of function evaluations and run time with penalty for constraints violation.



The results obtained for modified objective function (11), Figure 4, are compared
with those obtained for the standard approach that discards infeasible, Figure 3. The
values of the objective function (4) obtained for four methods and two approaches to
constraints implementations are collected in Table 1.
The presented results indicate that the trade off between the size of the initial popu-

lation that influences the time of calculation, and the solution accuracy will be necessary.
The suggested values of NP parameter are 10 – 15. The CRS2 algorithm is very fast but
only gives an approximate solution, even in the case when the penalty function is used.
The CRS4 method provides better results with respect to CRS2. In our tests the best
results were obtained by CRS6 and CRSI methods but the time required to compute a
solution was longer than the CRS2 method.

Table 1. Function and penalty values with different approach to infeasible points.

CRS2 CRS4 CRS6 CRSI
NP Solution Penalty Solution Penalty Solution Penalty Solution Penalty

Discarding infeasible points

10 1212.899 0.00000 1241.029 0.00000 1241.271 0.00000 1241.271 0.00000

15 1216.683 0.00000 1241.130 0.00000 1241.272 0.00000 1241.272 0.00000

20 1215.797 0.00000 1241.142 0.00000 1241.272 0.00000 1241.272 0.00000

25 1215.951 0.00000 1241.119 0.00000 1241.272 0.00000 1241.272 0.00000

Penalty for constraints violation

10 1229.209 0.65939 1235.638 0.64042 1241.272 0.00002 1241.272 0.00003

15 1232.280 1.35452 1238.941 0.21826 1241.272 0.00001 1241.272 0.00003

20 1236.550 1.93125 1235.862 1.07984 1241.272 0.00002 1241.272 0.00002

25 1237.452 1.12425 1236.818 0.98825 1241.272 0.00004 1241.272 0.00002

The numerical results of three series of experiments (prices of 15, 31 and 53 products)
and CRS2, CRS6, CRSI methods are presented in Table 2. All obtained results were
compared to the best.

Table 2. Comparison of the fastest and the most accurate methods.

Task The best Algorithm Function Solution Penalty Run Time Relative
size solution evaluations (in seconds) error

CRS2 24002 1235.41 0.63 1.98 0.47%
15 1241.27 CRSI 45180 1241.27 0 3.51 0.00%

CRS6 39392 1241.27 0 3.16 0.00%

CRS2 69562 805.76 0 23.39 3.01%
31 830.747 CRSI 155452 830.75 0 45.00 0.00%

CRS6 122298 830.71 0 33.64 0.00%

CRS2 76169 526.03 0 23.85 3.42%
53 544.649 CRSI 389933 544.65 0 101.07 0.00%

CRS6 285849 544.65 0 75.99 0.00%

As a conclusion the following strategy is proposed: in cases when accuracy of the
solution is the crucial the CRSI or CRS6 methods with the discarding of infeasible points
are suggested; when it is crucial that the problem is solved quickly the CRS2 method
with the penalty function should be used.



5.2 Parallel Version

The multithread versions of CRS2 and CRS6 algorithms were applied to solve the
optimization problem (2) for 15 products. Many calculations were performed using both
methods and different number of threads. The numerical experiments were carried out
on a Sun Fire V440 equipped with four processors. The goal was to speed up calcula-
tions. The question was how parallelization influence computing time. The results of the
experiments are collected in Table 3 (CRS2 method) and Table 4 (CRS6 method). The
tables present the average solution, number of function evaluations and calculation time
for 5 runs of each optimization algorithm.

Table 3. Parallel version of CRS2 with penalty for constraints violation.

Threads Function evaluations Solution Penalty Run time

1 35264 1236.557 1.024 2.93

2 34238 1236.529 1.532 1.47

3 35442 1235.396 1.507 1.06

4 34844 1236.061 1.588 0.82

5 38543 1237.319 1.703 0.92

6 48936 1236.764 1.856 1.16

7 66681 1237.217 1.815 1.55

8 79864 1237.247 0.763 1.86

Table 4. Parallel version of CRS6 with infeasible points discarded.

Threads Function evaluations Solution Penalty Run time

1 59693 1241.27 0 4.74

2 61091 1241.27 0 2.49

3 62375 1241.27 0 1.73

4 61274 1241.27 0 1.37

5 61346 1241.27 0 1.35

6 60321 1241.27 0 1.33

7 61036 1241.27 0 1.32

8 60836 1241.27 0 1.34

The results presented in Figure 5 show that the number of threads influences the
computation time: the bigger the number of threads (but less or equal the number of
processors) - the better results. The obtained values of performance were similar to the
sequential version.

The acceleration factors for the 15-dimension price management problem and four
threads were calculated for CRS2 and CRS6 algorithms:

1 thread timeCRS2
4 threads timeCRS2

=
2.93

0.82
= 3.57,

1 thread timeCRS6
4 threads timeCRS6

=
4.74

1.37
= 3.46

The values of acceleration factors show the effectiveness of a parallel implementation,
both for CRS2 and CRS6 algorithms.



Figure 5. Run times for CRS2 and CRS6 parallel method.

The numerical results of four series of experiments (prices of 15, 31, 53 and 76 prod-
ucts) are presented in Table 5. The solutions provided by CRS2 and CRS6 methods are
compared with the best.

Table 5. Comparison of the fastest and the most accurate methods in multithreads mode.

Task The best Algorithm Function Solution Penalty Run Time Relative
size solution evaluations (in seconds) error

15 1241.27 CRS2 34844 1236.061 1.588 0.82 0.42%
CRS6 61274 1241.271 0 1.37 0.00%

31 830.747 CRS2 99541 807.809 0 10.11 2.76%
CRS6 202326 830.747 0 15.77 0.00%

53 544.649 CRS2 130232 525.634 0 12.31 3.49%
CRS6 536782 544.649 0 36.40 0.00%

76 1898.658 CRS2 149499 1833.475 0 29.33 3.43%
CRS6 1350278 1898.656 0 180.95 0.00%

5.3 Distributed Version

The distributed version of the CRS2 algorithm was applied to solve the optimization
problem (2) for 15, 31 and 53 products. The goal of distributed implementation, as
described in section 3.2, was to improve the accuracy of the solution by sequential CRS2
rather than speed up the calculations. The numerical experiments were carried out on
a network of five Sun workstations. The average values of performance (4) provided by
parallel and distributed CRS2 implementations and obtained during 5 runs of each task
are compared in Table 6.
The numerical results show that the distributed version of CRS2 provides better solu-

tions with respect to sequential (see Table 2) and parallel realizations. The time required
to obtain a solution was similar for both distributed and sequential implementations and
longer than in the parallel version. The number of processors influences the effective-
ness of optimization method, that is presented in Table 7. The bigger the number of
processors - the better the results.



Table 6. Comparison of distributed and parallel CRS2 implementation.

Task The best Parallel implementation Distributed implementation
size solution Solution Relative error Solution Relative error

15 1241.27 1236.061 0.42% 1239.527 0.14%

31 830.747 807.809 2.76% 812.743 2.17%

53 544.649 525.634 3.49% 530.738 2.55%

Table 7. Solution accuracy.

Distributed implementation The best solution
Computational Processes Solution Relative error

1 1233.128 0.66%
3 1237.772 0.28% 1241.27
5 1240.441 0.07%

6 Conclusions

In this paper the application of the random search CRS methods to optimal pricing
calculations was discussed. Three versions of CRS algorithms were compared: sequen-
tial, parallel and distributed. The conclusion to be drawn is that parallel/distributed
calculations provides the better solution for the optimization process and speeds up the
calculations.
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