
HYPERMARKET – an evolutionary paths planner

Anna Kunicka1 and Halina Kwasnicka1

1 Wroclaw University of Technology, Institute of Applied Informatics, Wroclaw, Poland,
email: aniakunicka@o2.pl, halina.kwasnicka@pwr.wroc.pl

Abstract. The paper presents a new method for path planning. As a real task
we assume path planning during shopping in hypermarkets. The method uses a
hierarchical approach, where the first algorithm at the low level is responsible for
searching a feasible shortest path between two points in the hypermarket, but
the second one, at the high level, is developed for searching the best ordering of
purchases and the most suitable cash desk. The main goal is to find the shortest
path from an entry, via all assumed purchases to the cash desk. In our study,
we developed genetic algorithms at the both levels. However, we tested other
approaches, namely Ant Colony Optimization and Dijkstra’s algorithm.

1 Introduction

The path-planning problem is a typical problem that mostly occurs in issues concerning
mobile robots, games, etc. It consists in finding the path that is collision-free and satisfies
certain optimization criteria (for example time, length) in an environment that includes
obstacles [8]. There are many approaches that lead to finding a solution; one of them
is based on genetic algorithms. An example of such an approach can be found in [6, 8],
where an adaptive Evolutionary Planer/Navigator (EP/N) is presented. EP/N finds the
near-optimality paths for mobile robots. Improvement of this method is proposed in
[7] where the authors reduced the size of the search space. The modified EP/N takes
advantage of heuristic knowledge gained through the robot’s reaction to the environment.

A genetic algorithm that tries to find the feasible path in an environment in which the
robot moves is presented in [4, 5]. It uses simple genotype structure that contains only
the essential information for path planning. The authors concentrated mainly on efficient
processing. Unfortunately it is not able to find feasible paths for all search spaces.

A genetic algorithm that finds the solution to the problem of planning a robust sub-
optimal trajectory in the velocity space of mobile robot is described in [3].

In this paper we present an evolutionary approach for solving a particular instance
of path planning problem: we try to develop an efficient evolutionary algorithm for
finding the shortest path from an entry, by shelves with required (assumed) purchases
to one of the opened cash desks in the hypermarket. We assume that the locations
of shelves with needed purchases and cash desks are known. We have designed the
hierarchical genetic algorithm (the method called HGAPath – Hierarchical Genetic
Algorithm for paths planning) for this task. Experiments using developed computer
program HYPERMARKET reveal the usefulness of the HGAPath as a paths planner
tool.

The paper is structured as follows. Section two contains problem formulation. In
section three we describe the proposed method together with genetic algorithms at the
low and high levels. A huge number of experiments has been performed, but only a few
are presented in section four. A short summary ends the paper.

2 Problem definition

Our goal is to find the shortest path during shopping in a hypermarket with an assumed
rectangular shape. In the hypermarket there are a number of shelves that are also
rectangular. In general, shelves are perceived as obstacles, but we must visit also shelves,
where our purchases are located. These are fixed places, which have to be reached to
make particular purchases. Additionally, we assume only one entry and a number of cash
desks, all represented as points on the considered hypermarket surface. The number of
purchases is fixed. Fig. 1 presents a schema of hypermarket representation in our study.
As a result, we obtain a list of points that our path has to pass through. The path that

cash desks

our purchases

shelves

entry

1
2

3

4

5

6

Figure 1. An example of hypermarket.

we are looking for has to start in the entry point, pass through all points symbolizing
purchases, and end in one of points that represent cash desks. The path has to be feasible,
what means that none of fragments of the path can lie on any shelve.

3 Hierarchical Genetic Algorithm

HGAPath is a hierarchical algorithm, it is composed of two levels of algorithms: the low
level and the high level (see Fig. 2). The low level algorithm finds the feasible and as short
as possible path between any two points situated in the hypermarket, it means, between
the locations any two purchases. The high level algorithm is responsible for determining
the order of making purchases and choosing the cash desk. Thanks to such division we
can work these two algorithms separately and the complete algorithm is very flexible. It
is worth underlying that we can put at every level not only genetic algorithm, but also
any algorithm that is able to solve the same problem. For example, instead of genetic
algorithm at the high level we can use Ant Colony Optimization (ACO) algorithm [2],

at the low level – Dijkstra’s algorithm [1]. In the mainstream of our study we use genetic
algorithms in both levels.

e.g., genetic
algorithm, Dijkstra’s
algorithm

e.g., genetic
algorithm, ACO
algorithm

Two points
situated in the
hypermarket

The path that
connects two

points

The high level

algorithm

The low level

algorithm

Figure 2. Schema of the HGAPath.

3.1 The low level genetic algorithm

The low level genetic algorithm is responsible for finding the feasible and the shortest
path between two points situated in the hypermarket.

Chromosomes, fitness function and method of selection. A chromosome repre-
sents a path that consists of straight-line segments – a sequence of points. One segment
joins adjacent points in a chromosome. All chromosomes (individuals) have the same
first point and also the last point. Between these points (i.e., two purchases) we want to
find a path in the hypermarket. All individuals in every population are feasible.

Fitness function f is defined as the total length of the path, it has to be minimized.
We use the rank-based selection method, it is suitable for minimization problems and
does not require fitness scaling. It works in that individuals in the current population are
sorted decreasingly by values of fitness function. Each individual is assigned rank that is
equal to the position in the new order. The number of descendants of particular individual
amounts to integer part of a quotient of doubled rank and a total number of individuals
in the population. This method does not provide enough number of individuals, therefore
the rest of lacking individuals is taken additionally on the strength of reminder of earlier
mentioned quotients. Moreover one extra copy of the best individual goes to the new
generation without any changes (so-called survive the best).

Initialization. In this subsection we describe how chromosomes are generated. Ini-
tially every chromosome consists of two points. The path which we look for has to join
these two points. Next, a verification of the chromosome feasibility is made. If yes, the
algorithm ends, because the shortest path is found. If chromosome does not represent a
feasible path, there is randomly chosen a vertex of shelve from such vertices of shelves,
which create a feasible straight-line segment with the first point in the chromosome. A
point that is situated near the chosen vertex is inserted into chromosome between the

first and the second point. It is then checked if the whole path represented by the chro-
mosome is feasible. If it is, algorithm ends, if not – there is randomly chosen a vertex
from such vertices of shelves, which create a feasible straight-line segment with the sec-
ond (previously inserted) point in the chromosome. Point situated near the chosen vertex
is inserted into chromosome between previously inserted point and the last point of the
chromosome. Again the verification is made – the procedure is repeated until the path
represented by the chromosome is feasible.

Genetic operators. Developed genetic operators work on feasible chromosomes and
create chromosomes that are feasible, too.

Mutations. In the low level genetic algorithm there are eight kinds of mutation. Two
remarks are important concerning mutation: (1) all kinds of mutation are made only
under assumption that chromosome after mutation remains feasible, (2) the first and the
last point in the chromosome cannot be mutated.

• Deletion of the point. It deletes a randomly chosen point from the chromosome.

• Insertion of the point. It inserts a randomly generated point before a randomly
chosen point in the chromosome. Of course, before the first point in the chromosome
there cannot be inserted any point.

• Displacement of the point. It displaces a randomly chosen point. Values of two
coordinates of randomly selected point are changed.

• Change of one coordinate of the point. It changes one coordinate of a randomly
chosen point. This operator differs from the previous one, because it makes only
small changes in coordinates of the points, while the former makes it much more
bigger.

• Deletion of a few points and generation new ones in their place. It deletes a
randomly chosen few adjacent points from the chromosome and generates on their
place others (not necessarily the same amount).

• Displacement of two adjacent points in the same direction with the same value. It
changes a single coordinate of two randomly chosen adjacent points in the chro-
mosome. The randomly chosen coordinate is changed. The same value is added to
the coordinate of these two points.

• Displacement of two adjacent points in the same direction with the different value.
This operator works like the previous one. There is only one difference - dissimilar
values are added to the selected coordinates.

• Displacement of few points. It displaces a few randomly chosen adjacent points in
the chromosome. There are randomly chosen new coordinates of these points.

Crossover. Crossover involves two chromosomes. A test is made as to whether paths
represented by these two chromosomes meet in some place. If there does not exist an
intersection point – chromosomes are not changed. If there exists such point – the first
descendant is created in that way, that the first part of points from the first chromosome
(before the intersection point) become the first part of points of the descendant. Next,
to the descendant is added the intersection point and then the last part of points (after
the intersection point) from the second chromosome. The second descendant is created
in the same way, but its first part comes from the second chromosome and the second
part – from the first parent. Descendants replace parents in the population. If there is
more than one intersection point, only the first one becomes the crossover point.

3.2 The high level genetic algorithm

As it was mentioned, this algorithm is responsible for determining the order of making
purchases and choosing the cash desk. It uses the results provided by the low level
algorithm.

Chromosomes, initialization, fitness function and method of selection. Every
purchase has a unique number. Similarly, all cash desks are also numbered. A chromo-
some is a sequence of the numbers of purchases (a permutation) and, as a last number,
it contains a number of cash desk, where the path ends. The length of chromosome is
constant. The exemplary chromosome, which codes a path that passes by six purchases
in a hypermarket containing eight cash desks, could be a sequence (bold number is a
number of cash desk): (2 5 3 4 1 6 5).

An initial population is randomly generated. First, there is generated a random
permutation of numbers of purchases and then a random number of cash desk.

Fitness function is defined as a total length of the path that is coded by the particular
chromosome. To calculate it we have to know the length of every path that joins adjacent
points in the chromosome. In this place we have to make use of results generated by
the low level algorithm. Fitness function, of course, has to be minimized. We use a
tournament selection (three individuals take part in a tournament). Furthermore, the
best individual in the current population goes to the next population without any change.

Genetic operators. Now we introduce genetic operators that we used in the high level
genetic algorithm.

Mutations. In the high level genetic algorithm there are four kinds of mutation.
• Change of a cash desk. It changes a current number of a cash desk. The new

number of cash desk is chosen randomly.

• Exchange of two randomly chosen purchases. It exchanges two randomly chosen
purchases in the chromosome. For example, the individual (2 5 3 4 1 6 5) could
be modified into (2 4 3 5 1 6 5).

• Insertion of a randomly chosen purchase in a random place. It inserts a randomly
chosen purchase into a random place in the chromosome. Of course, this purchase
cannot be inserted at the last place in the chromosome, because this place is re-
served for the number of a cash desk. For example, the individual (3 6 1 2 5 4 7)
could be modified into (3 5 6 1 2 4 7). The purchase number 5 was inserted at the
second position in the chromosome.

• Inversion. Two points in the chromosome are randomly selected and the part of
chromosome between these points is inverted. The last number in the chromosome
(cash desk) is not a subject of inversion. For example, the individual (3 | 5 4 1 6 2
| 2) could be modified into (3 2 6 1 4 5 2).

Crossover. Crossover of two chromosomes is analogous to PMX (Partially Matching
Crossover) defined to solve the traveling salesman problem [6]. The last number in the
chromosome does not take part in the crossover. For example, two chromosomes:

(2 | 3 1 5 | 6 4 2)

(3 | 6 2 4 | 1 5 6)

could be transformed into:

(3 6 2 4 1 5 2)

(6 3 1 5 2 4 6)

4 Simulation study of the proposed method (HGAPath)

To verify proposed approach, the computer program named HYPERMARKET was
worked out. Using this program a number of simulations have been conducted. At
the beginning, the first phase of study was done – the two genetic algorithms, proposed
at the high and the low levels, were studied separately. These experiments allow to state
usefulness of developed algorithms and to tune all needed parameters, as probabilities of
mutations and crossovers and a size of population. All presented in the paper experiments
were performed with using values of parameters found in the first phase.

Below we present an example of the results obtained during study of the low level
genetic algorithm. Next subsection shows the results of the HGAPath.

4.1 Testing the low level genetic algorithm

Providing short paths between particular two purchases is crucial for the high level
algorithm, therefore the quality of the low level algorithm is very important.

Fig. 3 shows paths found by the algorithm in the untypical hypermarkets. Algorithm
copes with this task very well. It found optimal paths in relatively short time. It makes
it mainly thanks to the method of initialization of chromosomes – it works well for such
kinds of problem. The experiments show us that the algorithm is able to find paths
between two points on the surface with obstacles; the hypermarket with shelves is only
an example of such a task. Figures 4a), 4b) and 4c) present paths found in hypermarket
that has higher amount of shelves than hypermarkets before. The best individual after
10 generations is shown in Fig. 4a), in Fig. 4b) – after 61 generations, and in Fig. 4c) –
after 144 generations. As we can see, at the beginning the algorithm found path that was
not near the shortest path between points. But thanks to diversity of genetic operators
it was able to find the optimal path (Fig. 4c)).

Figure 3. Paths between two points found in untypical hypermarkets.

We also tested Dijkstra’s algorithm, but the results were not so good as we expected.
Dijkstra’s algorithm worked at a graph that was constructed in that a node was created
for every point in a hypermarket, which did not lie at any shelve. Arc connected such
pairs of nodes that represented points situated directly next to each other. Weights of

a) b) c)

Figure 4. Paths between two points – the best individual after 10 (a), 61 (b), and 144 (c)
generations.

arcs amounted to the distance between points that was represented by the nodes. Such
construction of the graph is very convenient (it is not necessary to hold whole structure
of the graph in memory and it is very easy to create such graph), but sometimes it
makes finding the shortest path between two points impossible. There is taken into
consideration only direct neighborhood of points and paths that this algorithm finds are
”angular” (see Fig. 5). As we can see in Table 1, genetic algorithm is generally better
then Dijkstra’s algorithm (it finds shorter paths in shorter time) but there are instances
when Dijkstra’s algorithm works better. Such situations take place when hypermarket
has big number of shelves and there are not many free space between them.

Figure 5. Example of the path between two purchases found by Dijkstra’s algorithm.

4.2 Simulation study of the whole proposed method

In this section we shortly present how the whole hierarchical genetic algorithm works.
Two examples are presented, the first with regular arranged shaves (plain hypermarket),
and the second one, that seems to be more difficult.

Experiment with the plain hypermarket. Fig. 6a) shows the best individual after the
second generation. It is easily seen that this path is far from the optimal one. The
path after 59 generations (Fig. 6b)) is evidently shorter then the previous one. Further
evolution leads to the better solution – see Fig. 7. Our method found the optimal path

Table 1. Paths found by algorithms tested at the low level (Genetic and Dijkstra’s algorithms)
for different hypermarkets.

Genetic Algorithm Dijkstra’s Algorithm
Hypermarket Generation Number Length Time [min:s] Length Time [min:s]

Plain 3 236,4802 00:0.1812
hypermarket 36 232,9650 00:03.3328 238,1232 01:03.4062
with 4 shelves 156 232,1086 00:15.1953

Hypermarket 10 717,0866 00:18.4296
as in Fig. 3 50 683,2647 01:30.9843 683,2325 33:01.0625
(on the left) 330 670,9768 10:03.8312

Hypermarket 8 357,0657 00:01.4500
as in Fig. 3 35 350,6917 00:07.3250 357,8477 04:38.9843

(on the right) 449 343,4961 01:41.7984

Hypermarket 10 269,5939 00:14.1890
as in 72 230,8128 01:58.5625 193,4264 01:59.1718
Fig. 4 250 182,9485 06:37.1125

More complex 10 471,4351 00:24.3546
hypermarket 220 402,6661 10:57.0218 368,3624 10:33.1875

with 19 shelves 399 401,3044 20:01.1812

in the relatively short time. But, we should admit that the studied hypermarket is not
complex and the number of purchases is not high.

a) b)

Figure 6. The plain hypermarket – the best individual after 2 (a) and 59 (b) generations.

Experiment with the more difficult hypermarket. We have defined a number of more
complicated tasks for the proposed method, but here we show only one example. The
hypermarket shown in Fig. 8 is more complex than the previous one, and the number
of purchases is higher as well (it amounts to 15). The solution space is larger and the
method requires more time for solving such problems. For the task presented in Fig.
8, the hybrid genetic algorithm found solution during 960 generation, what is not very
long evolution. The near optimal solution is presented in Fig. 9a), but this path can be
shortest, as in Fig. 9b).

We tested also Ant Colony Optimization approach. Table 2 contains results generated
by the tested algorithms: genetic algorithm, Elitist Ant System [2] and Rank-Based Ant
System [2]. Rank-Based Ant System turned out to be slightly better than genetic algo-
rithm and Elitist Ant System, but generally all algorithms found paths with comparable

Figure 7. The plain hypermarket – the best individual after 140 generations.

lengths.

Figure 8. The best individual after third generation.

a) b)

Figure 9. The best individual after 950 (a) and 960 (b) generations.

5 Summary

In the paper we present a general approach for path planning problems. As an example
we have used atypical problem - searching for the shortest path from entry to cash desk
making by the way all needed shopping. We assume that shaves are obstacles, but our
purchases placed on the shelves constitute desired points for the searched paths.

Table 2. Paths found by algorithms tested at the high level for different hypermarkets (GN:
generation number, IN: iteration number, L: length, T: time).

Genetic Algorithm Elitist Ant System Rank-Based Ant System
Hypermarket GN L T[s] IN L T[s] IN L T[s]

Plain 1 924 0.000 1 645 0.005 1 601 0.006
hypermarket 44 627 0.019 54 574 0.095 40 588 0.127
as in Fig. 6 242 574 0.100 56 578 0.096 54 574 0.169

More complex 1 2308 0.000 1 1459 0.005 1 1242 0.014
hypermarket 150 1295 0.095 60 1216 0.180 20 1218 0.161
as in Fig. 8 831 1216 0.505 165 1206 0.483 44 1206 0.334

We have proposed a method consisting of two hierarchical algorithms. As the low
level algorithm (searching the shortest path between any two points in the hypermarket)
and the high level algorithm (searching the optimal permutation of purchases and an
adequate cash desk) we use genetic algorithms with developed special genetic operators
and a method of generation of initial population. This method and genetic operators
assure feasible solutions. But in general, both genetic algorithms (at low and high levels)
can be substituted by any other algorithm. We have tested Dijkstra’s algorithm at the
low level and Ant Colony Optimization at the high level.

In the future we plan to develop our method by tuning other algorithms and testing
the method using a number of different path planning tasks.

Bibliography

[1] Dijkstra, E. W. A Note on Two Problems in Connection with Graphs. Numerische

Math 1: 269-271, 1959.

[2] Dorigo, M., Stutzle, T. Ant Colony Optimization. MIT Press, 2004.

[3] Gallardo, D., Colomina, O., Florez, F., Rizo, R. A Genetic Algorithm for Robust
Motion Planning. Proceedings of IEA-AIE’98, vol. 1416, 1998.

[4] Geisler, T., Manikas, T. W. Autonomous robot navigation system using a novel value
encoded genetic algorithm. Proceedings 45th IEEE Int. Midwest Symp. on Circuits and

Systems 3: 45-48, 2002.

[5] Hermanu, A., Manikas, T. W., Ashenayi, K., Wainwright, R.L. Autonomous robot
navigation using a genetic algorithm with an efficient genotype structure. Intelligent
Engineering Systems Through Artificial Neural Networks: Smart Engineering Systems
Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Complex Systems
and Artificial Life, 319-324, 2004.

[6] Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs.
Springer, 1996.

[7] Wang, Y., Mulvaney, D., Sillitoe, I. Robot Navigation by Genetic Algorithms. 2nd
ESC Division mini-conference, 2005.

[8] Xiao, J., Michalewicz, Z., Zhang, L., Trojanowski, K. Adaptive Evolutionary Plan-
ner/Navigator for Mobile Robots. IEEE Transactions of Evolutionary Computation 1:
18-28, 1997.

