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AbstractThis paper considers the problem of the performance optimization of a
queuing system with long—tailed service time. Due to nonconvexity of the problem
global optimization methods have to be used. Interval methods and genetic algo-
rithms are considered. Approximation of the Laplace transform of the probability
distribution function of the service time arises as a subproblem. A new method
to do it is developed.

1 Introduction

Consider a queuing system, representing e.g. an Internet server.

We want to solve the following problem: find the arrival rate A and the service rate u
of this queuing system, to optimize some performance measure for users waiting for the
completion of their tasks. It can be set as the following optimization problem (e.g. [2],

[9], [12]):

max (Q=v()=2-GOp —Cw)

S.t.
0<A<A,
A< .

The meaning of the above notions is as follows:

e V(M) —is the aggregated utility of the users, assumed to be increasing, concave and

strictly differentiable

e G(\, p) — is the delay cost of the user,

e C(u) — is the capacity cost (usually a linear structure is assumed C(u) = ¢ - p).
To get rid of the strict inequality in the ergodicity condition A < u, we replace it by the
inequality:

A—p+e<0,

where ¢ is a small positive number.

The paper [11] considers more details and other notions mentioned in the above
optimization problem.



What about the delay cost G 7 In [2] a few measures are proposed: linear cost,
polynomial cost, etc. However, in the case of Pareto—distributed service time (with
a < 2; see below, Section 2) most of them are useless: they assume infinite values,
regardless the values of parameters A and g (proof given in [12], Subsection 4.1.4). The
only useful measure of the delay cost is the exponential one:

G=12-(1-d(k) ,
k

where v > 0 and k > 0 are some parameters, estimation of which is beyond our interest
and w(k) is the Laplace transform of the PDF (probability density function) of sojourn
time.

So, what we need to measure performance is the L—transform of the sojourn time,
which (for an M/GI/1 queuing system) is defined by the so—called Pollaczek—Khinchin
formula (see e.g. [1]):

. (1=p)-b(s)-s
v = A-b(s)+s— A g

where p = % and b(s) is the L—transform of PDF of the service time
The Laplace transform of the PDF b(¢) of a random variable is defined as follows (see

e.g. [3], [13]):
oo
B(s) = L{b(t)} = / e~tb(t) dt @)
0
Now, what distributions are suitable to model service times in computer networks ?

2 Long-tailed distributions in queuing modeling

Many researchers (e.g. [3], [13]) claim that service times (and several other quantities)
in computer networks should be modeled by long-tailed distributions, i.e. distributions,
the tails of which decay slower than exponentially:

Va>0 lim e**F¢(z) = 400, (3)
Tr—>00
where F¢(z) = 1 — F(x) is the tail (complementary cumulative distribution function) of
the random variable.
A subclass of long-tailed distributions are power—tailed ones. Their tails decay hy-
perbolically:
Ja>03¢>0 lim z%- Fé(z) =c . (4)
T—r00
Good examples of those are: Pareto distribution (power—tailed), lognormal and Weibull
distribution (both long—tailed, but not power—tailed).
In the remaining part we restrict our attention to Pareto distribution. Its most
commonly encountered form makes use of two parameters: the shaping parameter a >
0 and the location parameter 8 > 0. A Pareto—distributed variable X has the CDF

«
(cumulative distribution function) Fx(z) =1 — (g) (for x > B; otherwise Fx(z) = 0)
and PDF fx(z) = 25 (also for z > f3).

T



2.1 Laplace transforms for long—tailed distributions

The L—transform, defined by Equation (2), is well-defined and finite for the PDF
of each random variable. Unfortunately, for some probability distribution functions the
Laplace transform does not have an analytic form. According to e.g. [13], this is the case
for all power—tailed distributions (e.g. Pareto distribution) and most other long-tailed
ones (including lognormal and Weibull distributions).

The Laplace transforms, useful e.g. in M/GI/1 and GI/M /1 queuing systems analysis
(see e.g. [1], have to be approximated somehow. Below, we present a popular method to
approximate such transforms.

2.2 TAM — Transform Approximation Method

TAM (Transform Approximation Method) is described e.g. in [3], [13].

Let us consider a random variable B with the PDF b(t) and CDF Fg(t). We are
trying to compute the L—transform, i.e. the integral (2), approximately.

The essence of TAM is very simple: we discretize the set of values of the random
variable B — that is contained in the interval [0, +00[ — obtaining n points: b; < by <
coo < by

Let us denote the CDF’s values in these points in the following way:

We associate some probability masses with these points:

p= T8 oy Y T (5)
2 2
pi:w fori=2,....n—1. (6)

Then we can approximate the L—transform f(s) of the PDF of X by a finite sum:
. n
bs) =Y pi-e " (7)
i=1

The above description does not specify how to choose points b; (or y;). There are several
approaches to do it (see below), but how to do it to get the best accuracy remains an
open problem.

Possible parameterizations. One, the first, method was developed in 1998 by Gross
and Harris. This first version used the formula b(s) = + - > 1", e™ % where b; =

F (7)-

Sur(bzﬁ an approach is called uniform—TAM, or shortly UTAM. Currently, more widely
used is the GTAM (geometric-TAM), which sets: y; = 1 — ¢* (for some ¢ such that
0<g< ].) and b; = F_l(yi).

Independently of the used parametrization, the classical TAM has some disadvantages:

e we must use some artificial probability masses (5)—(6), different from actual prob-

ability distribution,




e there are several sources of error: discretization, truncation, etc, that are difficult
to estimate.
To overcome these faults, let us use the interval methods.

3 Basics of interval computations

3.1 Interval arithmetic

Now, we shall define some basic notions of intervals and their arithmetic. We follow
a wide literature here, like the article [5] or books [4], [6], to name just a few examples.

We define the (closed) interval [z,Z] as a set {z € R | z < 2z < ZT}. We denote all
intervals by brackets; open ones will be denoted as |z, Z[ and partially open as: [z,Z],
]z,Z]. (We prefer this notation to using the parenthesis that are used also to denote
sequences, vectors, etc.)

We also use boldface lowercase letters to denote interval variables, e.g. z, y, 2.

Following [7], IR denotes the set of all real intervals and IC...; — the set of “rectan-
gular” complex intervals (i.e. pairs of intervals for real and imaginary parts).

We design arithmetic operations on intervals so that the following condition was
fulfilled: if we have ® € {+,—,-,/},a € a, b€ b, then a ®b € a ® b. We omit the actual
formulae for arithmetic operations; they can be found elsewhere, e.g. ([4], [5], [6])-

Now, let us define a notion to set links between real and interval functions.

Definition 3.1. A function f: IR — IR is an inclusion function of f: R — R, if for every
interval & within the domain of f the following condition is satisfied:

{f(z) |z €z} Cf(z) . (8)

The definition is analogous for functions f: R* — R™.

4 Interval Transform Approximation Method

To introduce the interval analog of TAM (Section 2.2) let us consider a real-valued
random variable B with the PDF b(¢t) and CDF Fg(t). In other papers, e.g. [10], [12]
(see also [8], we use the theory of so—called interval random variables to develop the
bounds on the L—transform of b(t), i.e. the integral (2). It leads to the following formula:

b(s) = Y i oo ©)

where b; = [bi—1,b;], bo < b1 <--- < b, =400, 8 = [g, E] is an interval complex variable
and p; = P({B € b;}).

In (9) b is a function mapping the set of complex ~intervals IC et into itself. In [12]
the proof is given that (9) is an inclusion function of b(s), if only s € s and Res > 0.

The essence of the method Let us now refer to TAM, described in Section 2.2 and
develop its interval analog. We may call it “Interval TAM” or ITAM for brevity.



Not to get too involved in details (concerning the interval random variables theory),
the essence of ITAM is to use Formula (9), instead of (7), to approximate the Laplace
transform.

The advantages of such approach in comparison with the traditional TAM are obvious:

e we use correct probabilities associated with the intervals, not probability masses

quite arbitrarily associated with chosen points, as in (5)—(6),
e we can naturally bound the discretization error and truncation error,

e as in other interval methods, we can bound the numerical error (see e.g. [4], [5],

[6])-

5 Global optimization methods

As was shown in [14] (see also [9], [11] [12]), the optimization problem from Section 1
is a nonconvex one. This is why global optimization methods should be used to find its
solution.

Two methods were used to solve the optimization problem: an interval branch and
bound method and a genetic algorithm.

5.1 Branch and bound global optimization method

The general schema of the method (see e.g. [4], [5], [6]) can be expressed by the
following pseudocode:

IBB (2(0); f, Vf, V2f,...; g1, Vg1, V281, ., Em, VEm, V2Em,...)

// = is the initial box

// f(-) is the interval extension of the objective function f(-)

// Vf(-) and V?f(-) are interval extensions of gradient and Hessian of f(-)
// gi(-) are interval extensions of the constraints, etc.

// Lo is the list of solutions

v, 5] = () ;

compute fpin = the upper bound on the global minimum (e.g. objective value in a feasible point)
L= {(®,y)};
Lo = 0 5
while (L # ) do
x = the element of L with the lowest function value underestimation ;
compute the values of interval extensions of the constraint functions ;
if (x is infeasible) then discard x ;
update fin if possible ;
perform other rejection/reduction tests on « ;
if (x is verified to contain a unique critical point or @ is small and not infeasible) then
add x to Ly ;
else
bisect  to subboxes (! and 2® ;
compute lower bounds g(l) and g(z) on the function value in the obtained boxes ;
delete  from L ;
fori=1,2do
put (w(i),g(")) on the list L preserving the increasing order of the lower bounds ;



end for
delete from L boxes with y@ > frin ;
end if B
end while
delete from Lo the boxes with y® > frin ;
return Ly ; -
end IBB

The above pseudocode mentions some “rejection /reduction tests” that may be used in
conjunction with the IBB algorithm. There are several such tests. Most important of
them are: several kinds of Newton operators, constraint propagation steps and, probably
oldest of them all, monotonicity tests.

We do not describe them, as they are widely available in literature, e.g. [5] or in
books [4], [6], etc.

5.2 Genetic algorithm (GA)

The GA used for the global optimization was based on the schema of [15]). It has the
following features:
o the individuals are represented as vectors of floating point numbers taking value in
[0, 1],
e the range selection, based on Formula (10; see below) is used (with ¢ = 0),
e the uniform crossover is applied, i.e. two random individuals are combined linearly
(z: = a; -z + (1 — a;) - y;) with the coefficient a; uniformly distributed on [0, 1],
e the uniform mutation is used, done by replacing a given component of a vector
describing an individual, by a random number uniformly distributed on the interval
[0, 1],
e the population consists of 10 individuals,
e the best individual is guaranteed to survive if no better one is found (the elitist
succession) — it replaces the worst point of the new generation then,
e the computations are finished when the best individual remains unchanged for 100
generations,
e a specific succession procedure, preserving the population diversity is used — see
below.
The following probabilities are used in the rank succession:

2—c c
L= s Pn=—, (10)
n n
1—1 .
pizpn—l—n_l-(pl—pm) ,fori=2,...,n—1,

where ¢ € [0,1) is a parameter. Smaller values of ¢ give better efficiency, but lower
robustness.

The succession acts in the following way (see [15]):

1. check whether a better individual than the best of the old generation is found;

2. if it is not, replace the worst individual of the new generation by the “champion”;



3. starting from the second-best individual do the following:
a) compare the corresponding individuals from the old and new generation;
b) if the one of them is both better than the other and more distant (in the
sense of the Euclidean distance) from the “champion” then this individual survives;
c) otherwise
compute the distances form the champion (d, and d,) and (minimized)
objective functions (f, and f,) for the old and the new individual;
if (d, - fo > do - frn) then the new one survives;
otherwise the old one or the new one survive with probability %

6 Numerical experiments

The lack of space means the authors can present only a limited number of experiments.
We consider an M/P/1 queuing system, i.e. a single queue with one server, exponentially
distributed interarrival time and Pareto—distributed service time. The Pareto distribution
has the shape parameter o = 1.1, in all cases.

Table 1 shows the performance of the IBB algorithm, setting the parameters of the
queuing system. It uses ITAM to provide an enclosure of values of the L—transform.
The column “n.o. boxes” presents the number of boxes, containing the solution, that are
returned by the branch-and-bound algorithm.

Hence, Tables 2, 3 and 4 show the performance of the GA, using the real-valued
TAM.

Table 1. Results of the interval branch-and-bound for the single M/P/1 queue, capacity cost
¢ = 1.0 and exponential delay cost with different values of v and k; ITAM with 100 discretization
points

v k exec. time | f. eval. | n.o. boxes A "

10 | 10 0.66 sec. 73 7 [ 0.350004, 0.350006] | | 0.350504, 0.350507]
10 2 25.94 sec. 3491 121 [ 0.150201, 0.150202] | [ 0.150701, 0.150703]
5 2 2.78 sec. 374 68 [ 0.275082, 0.275084] | [ 0.275582, 0.275585|
0.1 |04 0.79 sec. 93 7 [ 0.387505, 0.387507] | | 0.388005, 0.388008]

Table 2. Results of the GA for the single M/P/1 queue with ¢ = 1.000; exponential delay cost
with v = 10 and k = 10; TAM with 100 discretization points

No. iter | fieval. | exec. time A 7 fopt

1 592 5920 0.820 sec. 0.349933 | 0.402276 || -1.172657
2 1008 | 10080 | 1.490 sec. 0.350136 | 0.352065 || -1.223070
3 475 4750 0.690 sec. 0.349778 | 0.360653 || -1.214125
4 1307 | 13070 | 1.870 sec. 0.350150 | 0.366449 || -1.208701
5 825 8250 1.200 sec. 0.350001 | 0.358384 || -1.216617
6 621 6210 0.910 sec. 0.350004 | 0.365069 || -1.209935
7 962 9620 1.410 sec. 0.350144 | 0.368917 || -1.206227
8 626 6260 0.930 sec. 0.350000 | 0.350906 || -1.224094
9 545 5450 0.780 sec. 0.349723 | 0.370158 || -1.204564
10 681 6810 0.970 sec. 0.350000 | 0.382247 || -1.192753




Table 3. Results of the GA for the single M/P/1 queue with ¢ = 1.000; exponential delay cost
with v = 10 and k = 2; TAM with 100 discretization points

No. iter | fieval. | exec. time A w fopt

1 422 | 4220 | 0.610 sec. || 0.150345 | 0.153552 || -0.221793
2 376 | 3760 | 0.570 sec. || 0.150015 | 0.213225 || -0.161931
3 720 7200 | 1.060 sec. || 0.150001 | 0.151823 || -0.223179
4 615 | 6150 | 0.870 sec. || 0.149996 | 0.152541 || -0.222455
5 380 | 3800 | 0.570 sec. || 0.150876 | 0.164338 || -0.211536
6 1346 | 13460 | 1.950 sec. || 0.150306 | 0.156384 || -0.218922
7 801 8010 | 1.190 sec. || 0.150001 | 0.151720 || -0.223281
8 704 | 7040 | 1.020 sec. || 0.150008 | 0.150745 || -0.224263
9 696 | 6960 | 1.040 sec. || 0.150390 | 0.156966 || -0.218425
10 754 | 7540 | 1.070 sec. || 0.150482 | 0.156728 || -0.218753

Table 4. Results of the GA for the single M/P/1 queue with ¢ = 1.000; exponential delay cost
with v =5 and k = 2; TAM with 100 discretization points

No. iter | fun. eval. | exec. time A n fopt

1 390 3900 0.560 sec. 0.275408 | 0.280162 || -0.751536
2 878 8780 1.240 sec. 0.275181 | 0.284501 || -0.747017
3 885 8850 1.280 sec. 0.275066 | 0.281781 || -0.749595
4 803 8030 1.140 sec. 0.275040 | 0.279522 || -0.751807
5 553 5530 0.780 sec. || 0.275733 | 0.327297 || -0.705522
6 671 6710 0.990 sec. 0.275062 | 0.282095 || -0.749281
7 615 6150 0.900 sec. 0.275066 | 0.282014 || -0.749364
8 1231 12310 1.790 sec. 0.275038 | 0.279503 || -0.751824
9 869 8690 1.280 sec. 0.275117 | 0.280306 || -0.751107
10 1005 10050 1.460 sec. 0.275136 | 0.275691 || -0.755700

7 Conclusions

Two algorithms to set optimal values of queuing system parameters were presented in
the paper. Both performed moderately well.

The interval method was slow for some cases (v = 10 and k = 2 in Table 1, but it is
more precise.

Both algorithms may still be improved, e.g. by using other approximations of the
Laplace transform in IBB or using more advanced genetic approaches (like Hierarchical
Genetic Strategy) in GA.
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