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Abstract. This paper focuses on analysis of distance between solutions of the capacitated 
vehicle routing problem generated by memetic algorihms with different crossover 
operators. The goal of the analysis is to see what are relative positions of such solutions in 
search spaces and if different algorithms explore different parts of these spaces. In the 
described memetic algorithms five different crossover operators are used. The conducted 
computational experiment shows that solutions generated by the algorithms have very 
similar, very good quality. From the distance analysis it appears that there are two types of 
instances of the considered problem: 10 instances have very similar solutions, concentrated 
in small regions of spaces (‘big valleys’), while other 12 have good solutions which reside 
in different parts of search spaces, implying wide and flat regions of good solutions. 

1 Introduction 
When an evolutionary algorithm is to be used in combinatorial optimisation there is usually a 
design issue to be faced: the construction of crossover operators for the considered problem. 
Very often, the well-known, simple operators constructed for binary or continuous optimisation 
(such as single- or multiple-point crossover, uniform crossover, etc.) are not useful; they yield 
poor results because they do not consider specific properties of solutions of combinatorial 
problems. It may be seen, for example, in the case of the common test-bed for metaheuristics, the 
travelling salesperson problem (TSP), where one of the most efficient operators, edge-assembly 
crossover (EAX, see [19]) was designed especially for this task after many years of research. 

One of possible approaches to this issue of operator design is to rely mainly on intuition and 
experience of a designer. Another one is to base it also on properties of the solution space to be 
searched. The method of systematic construction of recombination operators based on a property 
of search spaces called fitness-distance correlation ([5], [6], [9]) is of the second type. In case the 
fitness-distance correlation indicators are found, and the so-called ‘big-valley’ ([1], [7], [9], [11]) 
structure exists, the method leads to the construction of distance preserving crossover operators 
(DPX), described e.g. by Merz in [11], [13]. This work indicated that such operators had been 
extremely efficient when used in memetic algorithms (MAs) solving many classical 
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combinatorial problems: TSP, quadratic assignment (QAP), graph bi-partitioning (GBP), binary 
quadratic programming (BQP). 

Recently, the author performed the fitness distance analysis and systematic construction of 
recombination operators for the capacitated vehicle routing problem (CVRP, [9], [10]) and 
proposed 4 operators for the problem: 3 crossovers and 1 mutation. All these operators were 
based on notions of distance between solutions and preserved related distances completely or to 
very high extent. 

The main purpose of this text is to analyse the distance and relative position of good solutions 
generated by memetic algorithms which differ only in crossover operators (those systematically 
constructed and also those taken from literature). The relevant research questions are: are these 
solutions concentrated in some area of the search space or rather spread all over it? Are solutions 
of different algorithms (crossover operators) separated in the search space or mixed? What is the 
relationship between the quality of such solutions and their relative position in the solution 
space? Answers to these questions might provide some insight into the nature and existence of 
the phenomenon of ‘big valley’ in the CVRP. 

The author has not yet seen such analysis in literature: focusing on distance between 
solutions, rather than on quality (fitness). Here, the distance is understood as a measure of 
difference between properties of solutions and these properties have no direct connection with 
quality. Indeed, the quality of solutions does not even have to be known to examine their 
distance. 

2 The capacitated vehicle routing problem (CVRP) 
The goal of this problem is to plan delivery of goods from a transportation company’s depot 
(headquarters) to geographically distributed customers. This plan has to take into consideration 
all the customers and their specific demands for the goods. The company owns a set of vehicles 
and dispatches them to customers on routes defined by the plan. All vehicles are identical and 
must not be loaded for delivery with more goods than the specified maximum capacity. During 
deliveries a vehicle arrives at locations of subsequent customers (as specified in its route plan), 
unloads the demanded amount of goods and continues its itinerary. Finally, it returns to the 
depot. The cost of a solution (a delivery plan, which is a set of disjoint routes) is defined as the 
sum of lengths of all routes; it should be minimized. 

The reader interested in more detail on the CVRP is referred e.g. to [16]. This work is worth 
reading and it also contains many useful references to other publications. 

The instances of the CVRP considered here are the well-known 22 ones proposed by 
Christofides (7 data files with prefix ‘c’ in names), Taillard (13 files, prefix ‘tai’) and Fisher (2 
files, prefix ‘f’) (the same instances were used in [9], [10]; they are described in [16]). All these 
examples of the CVRP were attempted to be solved by many researchers and by means of 
diverse algorithms. The best-known solutions were generated by a tabu search algorithm of 
Rochat and Taillard ([16]), which also contained additional diversification and intensification 
mechanisms. That paper is the source of quality of the best-known solutions for this work. 

Examples of solutions for one instance of the CVRP (c50, with 50 customers) are shown in 
Figure 1. Each of the solutions consists of a depot (the centrally located circle) and customers 
(the other circles). All routes (lines connecting circles) start at the depot, pass through at least one 
customer, and return to the headquarters (lines to and from the depot are half-cut in order not to 
obscure the images). 



3 A note on the fitness-distance analysis of the CVRP 
Fitness distance analysis (FDA) of the CVRP conducted in the past (see [9] and [10]) required 
that measures of distance between solutions of the problem be defined. The author defined 3 such 
measures (normalized distance metrics): 

• dc perceives solutions as clusters (groups) of vertices (customers) which are put in the 
same route; the value of distance reflects the largest difference between clusters; 

• dpn also considers solutions as clusters only (like dc), but the value of distance indicates 
the average difference between clusters, instead of extremes; 

• de takes into account the edges of solutions; the value of distance reflects the number of 
different edges in them (similarily to the measure used in [1] to compare solutions of 
the TSP). 

The results of the FDA showed that the strongest correlation between quality and distance 
was obtained when de was the distance metric used, dpn being slightly worse and dc the worst. 
Although values of the linear determination coefficient (R2) indicated weak correlation, they 
were high enough to become significant with respect to the classification introduced by Jones and 
Forrest in [7] (correlation coefficient r>0,15), who described problems with such values of 
correlation as easy for optimisation. 

These very distances, de and dpn, provided the author with the basis for construction of the 
distance preserving crossover operators (see [9]): CPX (preserving dpn), CEPX (preserving de) 
and CECPX (preserving both dpn and de). These operators, some with amendments, are also used 
in this work. The mentioned distance metrics are applied here to analysis of distance between 
solutions of memetic algorithms. 

4 Crossover operators for memetic algorithms 
The core of the MAs used in this work, and the only difference between them, are crossover 
operators. 

4.1 The operators taken from literature 
The author implemented two such operators, route-based crossover (RBX) and split crossover 
(SPX), taken from descriptions of genetic algorithms for vehicle routing problems found in 
literature. 

The route-based crossover ([14], [8]) creates an offspring by copying a set of routes from one 
parent and completing it with routes from another one. The number of routes taken from the first 
parent is random and the copied ones are selected with uniform probability. Then, all routes from 
the second parent are considered for copying into the offspring and subsequent customers of each 
route are put in the offspring only if they are not assigned to any route yet. 

The author’s implementation of RBX differs slightly from the original: the number of routes 
copied from the first parent is not constant (one) but random, and the complicated repair 
procedure applied to each offspring in [14] is not used here, since it does not ensure the creation 
of a feasible solution. 

An exemplary offspring of RBX and its parents are shown in Figure 1. The routes inherited 
from the first parent (parent1) are emphasized in grey. 



 

 

Figure 1. An example of parents (local optima) and offsprings for instance c50.  
Top, left to right: parent1, parent2, offsprings of RBX and SPX.  
Bottom, left to right: offsprings of CPX2, CEPX, CECPX2. 

Prins’s split crossover, SPX ([15]), is based on a completely different idea, that is, of 
perceiving a CVRP solution as a sequence of customers, just as in the case of the TSP; the 
division into routes is ignored. Thus, the encoding of solutions in the Prins’s genetic algorithm is 
based on sequences. A deterministic decoding mechanism is used to obtain a valid CVRP 
solution from a sequence of customers. This decoding mechanism has a very strong property: it 
always provides the minimum-cost set of routes for the given sequence. Therefore, the CVRP 
problem is reduced to the one of finding an optimal sequence (permutation) of customers. 
Consequently, the SPX is simply the order crossover operator (OX) usually applied to 
permutations. The fitness of an offspring is obtained through the decoding procedure. 



One such decoded offspring of SPX is shown in Figure 1. Due to the mentioned encoding 
change it may contain extraordinarily long edges, which are seen in the picture. The emphasized 
routes and edges are inherited from parent1. 

4.2 The systematically constructed operators 
The first operator designed by the author ([9]) was called the clusters-preserving crossover 
(CPX), because it preserved the distance metric comparing clusters of customers in solutions, dpn. 
Its current version (CPX2) is also based on this distance: it recognizes clusters of customers 
which are put in one route in both parents (the common clusters) and creates routes in an 
offspring by a random choice of edges in these clusters. Eventually, the offspring preserves all 
clusters common to both parents. The customers outside those clusters are assigned to one-
customer routes. 

The CPX2 offspring shown in Figure 1 has the customers in common clusters emphasized. 
Unfortunately, the distinction between clusters would require colour images to be used, but one 
may note that one cluster means one route, so different clusters may be recognized. 

The second operator, called the common-edges-preserving crossover (CEPX) is based on de, 
the distance in terms of edges. It computes the set of edges common to both parents, which 
sometimes form long paths, and creates offspring’s routes using only these edges to connect 
customers; some additional depot-customer edges may be added during this process to start and 
finish routes. Finally, the customers which are not the end of any common edge are put in one-
customer routes. 

An example of a CEPX offspring is included in Figure 1; edges common to parents are 
emphasized. 

The last crossover operator described in [9] was called the clusters-and-common-edges-
preserving crossover (CECPX), since it preserved both dpn and de. Its current version (CECPX2) 
also preserves these metrics, and is in a way an amalgamation of CPX2 and CEPX. First, it finds 
in parents the sets of common clusters and common edges. Then, it creates each route in an 
offspring by using common edges to connect customers within one cluster; if there is no common 
edge to connect vertices in this cluster then a randomly chosen edge is added in order not to 
divide the cluster. Finally, customers outside common clusters and edges are put in one-customer 
routes. 

One such offspring is presented in Figure 1; common clusters and edges are drawn in grey. 
The only difference in pairs CPX2-CPX and CECPX2-CECPX is in the way common 

clusters are computed: the previous versions did not ensure inclusion of all common clusters in 
offsprings, while the current ones make sure no such clusters are omitted. 

5 Description of the experiment with memetic algorithms 
In order to compare the quality and distance of solutions generated by different memetic 
algorithms a large computational experiment was conducted. Five MAs were run, each one with 
only one crossover operator (CPX2, CEPX, CECPX2, RBX, SPX; these are also short names of 
the described algorithms). All algorithms were run 36 times for each instance of the CVRP. Each 
run was independent from others and employed the same settings: 

• the steady-state type algorithm; 



• initial population: one Clarke and Wright solution ([2]), several solutions generated by 
the Gillet and Miller heuristic ([4]), random solutions; full greedy local search on all 
initial solutions before a process of evolution is run; 

• one crossover and one mutation attempt (CPM, clusters-preserving mutation, see [9]) in 
one generation; 

• full greedy local search after each successful crossover and mutation (i.e. a feasible 
offspring); 

• local search based on aggregated neighbourhoods of 3 operators: merge of any 2 routes, 
exchange of any 2 edges, exchange of any 2 customers; 

• an offspring is accepted to the population only if it is better than the worst solution 
currently in the population and has different value of quality than all others in the 
population; 

• population size: 30; 
• uniform selection; 
• stop after 120 generations without a change in the whole population. 
The steady-state memetic algorithms with full local search introduces very strong selection 

pressure during artificial evolution, therefore the selection procedure used equal probabilities for 
all members of each population in order not to make the pressure stronger. The goal of the 
stopping criterion was to force all algorithms to completely converge and the process of 
evolution to fade-out. Thus, the times of computation for each algorithm and run were different, 
with the slowest (CPX2) being several times slower than the fastest (RBX). 

These settings for the memetic algorithms were not determined in any special manner. On the 
contrary, the author set them only to some values he deemed sensible, because it is not the 
author’s intention to perform intensive tuning of parameters of algorithms; he thinks such tuning 
is a way of transferring the effort of design from an algorithm to values of such parameters and 
should be avoided whenever possible. 

All the memetic algorithms were run on 12 identical PCs, each with Intel Pentium 4 3.2 GHz 
processor, 1GB RAM, running Windows XP. Total time of computation for this experiment 
exceeded 82 days. 

6 Analysis of results 
6.1 Quality of solutions 
Table 1 shows basic statistics on the quality of solutions: the average quality above the best-
known solution and the quality of the best solution found in all 36 runs of each algorithm. It may 
be noted that differences between algorithms are very low: maximum difference between 
averages is 1,13%, while on average it is only 0,2%. Nevertheless, some of these differences are 
significant, because the deviations of quality (not shown) are extremely small.  

Table 2 presents aggregated results of comparison of these averages for each instance by 
means of the U test (the U statistic is normally distributed under the null hypothesis). Each entry 
in this table shows how many times (i.e. for how many instances) the algorithm in a row is better 
than the one in a column. The two-sided version of the test was used with the level of 
significance set to 0.05 (5%). The last column in this table (the difference between sum of the 
rows and the sum of the columns for an algorithm) presents the overall quality indicator for each 
algorithm (the higher, the better, because it means an algorithm won more direct comparisons 



with other ones). Consequently, the best algorithm with respect to the quality of solutions is 
CEPX; SPX, CECPX2, RBX and CPX2 follow in the ranking (in that order). 

Table 1. Basic statistics on the quality of solutions of each memetic algorithm and for each instance.  
The smallest average values for each instance are emphasized in bold. 

Instance Best-known CPX2 CEPX CECPX2 RBX SPX 
  Avg. 

[%] 
Best 
[%] 

Avg. 
[%] 

Best 
[%] 

Avg. 
[%] 

Best 
[%] 

Avg. 
[%] 

Best 
[%] 

Avg. 
[%] 

Best 
[%] 

c100 826.14 0.40 0.15 0.36 0.15 0.36 0.00 0.33 0.00 0.31 0.15 
c100b 819.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
c120 1042.11 0.12 0.00 0.06 0.00 0.07 0.00 0.07 0.00 0.06 0.00 
c150 1028.42 0.89 0.12 0.54 0.20 0.66 0.26 0.95 0.00 0.83 0.17 
c199 1291.45 1.62 0.68 0.99 0.26 1.28 0.19 1.50 0.73 1.66 0.49 
c50 524.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
c75 835.26 0.26 0.00 0.28 0.00 0.22 0.00 0.39 0.00 0.23 0.00 
f134 11629.60 0.03 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
f71 241.97 0.00 0.00 0.01 0.00 0.00 0.00 0.06 0.00 0.00 0.00 
tai100a 2041.34 1.37 0.32 1.29 0.35 1.46 0.32 1.57 1.48 1.40 0.32 
tai100b 1940.61 0.04 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
tai100c 1406.20 0.45 0.00 0.25 0.00 0.45 0.00 0.64 0.24 0.53 0.02 
tai100d 1581.25 1.02 0.72 1.02 0.99 0.98 0.00 0.99 0.31 0.92 0.00 
tai150a 3055.23 0.15 0.00 0.09 0.00 0.09 0.00 0.16 0.00 0.09 0.00 
tai150b 2727.77 0.22 0.00 0.16 0.00 0.30 0.00 0.41 0.00 0.16 0.00 
tai150c 2341.84 1.24 0.89 0.99 0.72 1.09 0.85 2.12 0.91 1.58 0.84 
tai150d 2645.39 0.89 0.37 0.80 0.03 0.86 0.52 0.85 0.22 0.82 0.05 
tai385 24431.44 1.07 0.67 0.79 0.49 0.84 0.49 0.88 0.49 0.74 0.40 
tai75a 1618.36 0.12 0.00 0.01 0.00 0.02 0.00 0.03 0.00 0.04 0.00 
tai75b 1344.64 0.03 0.00 0.02 0.00 0.03 0.00 0.01 0.00 0.01 0.00 
tai75c 1291.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
tai75d 1365.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Avg.[%] - 0.45 0.18 0.35 0.14 0.40 0.12 0.50 0.20 0.43 0.11 

Despite the results of the statistical tests the author deems the differences negligible from the 
point of view of the overall quality of the obtained solutions: they are all of very good quality 
(near to the best-known ones). Therefore, it is worth checking if these solutions are also near 
each other in the sense of distances dpn and de, or perhaps the algorithms converge to different 
regions of the search space. 



Table 2. Aggregated results of the U test for significance of difference in averages. One entry indicates 
how many times (for how many instances) the null hypothesis was rejected in favour of the alternative one, 

i.e. how many times the algorithm in a row was better than the one in a column  
Algrow 
better than 
Algcolumn 

CPX2 CEPX CECPX2 RBX SPX Sum 
(row) 

Sum (row) – 
Sum (column) 

CPX2 0 0 0 4 1 5 -30 
CEPX 10 0 4 6 4 24 16 
CECPX2 8 2 0 6 3 19 11 
RBX 7 2 1 0 0 10 -11 
SPX 10 4 3 5 0 22 14 
Sum 
(column) 35 8 8 21 8  

 

Table 3. Information about new best solutions found. 
Instance Best-known New best Algorithms 

tai100b 1940.61 1940.379 CEPX 
tai150b 2727.77 2727.669 SPX, RBX 
tai75b 1344.64 1344.619 CPX2, CEPX, 

CECPX2, 
SPX, RBX 

As a side effect of the conducted computational experiment some new best solutions were 
found for 3 instances of the CVRP. Basic information on these solutions and the algorithms 
which generated them is shown in Table 32. It may be seen that the differences between new and 
old best solutions are extremely small. 

6.2 Distance between solutions 
All the solutions generated by the memetic algorithms were also examined from the point of 
view of the mentioned distances; Table 4 provides statistics on de and Table 5 on dpn. 

Distance in terms of edges: de. Table 4 contains 11 columns. Column 2 (All edg.) presents 
the total number of edges in a good solution of each instance. Columns 3 and 4 are cited after 
[10] and show determination coefficients (r2) between fitness and distance, and average distance 
(Avg. de) between solutions in large sets of random local optima (RLO) generated for fitness-
distance analysis. Column 5, computed from values in column 4, shows the average percentage 
of different edges in RLO. Column 6 contains numbers of different solutions generated in all 180 
independent runs of all 5 MAs. Next in this table are average (Avg. de, column 7) and maximum 
(Max. de, column 8) distances in pairs of solutions generated by MAs, and twice the height of 
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clustering trees generated for all sets of solutions (column 9, the meaning of these trees is 
explained later in the text). Finally, column 10 (Avg. diff. edg.) presents the average number of 
different edges in two solutions of MAs, while in column 11 these numbers are translated into 
percentages of all edges (as calculated in column 2). 

Table 4. Comparison of solutions generated by memetic algorithms with distance de. 

Instance All 
edg. 

r2 
([10]) 

Avg. 
de 

([10]) 

Avg.  
diff. edg.  

[% All edg.] 

Gen. 
diff. 
sol. 

Avg. 
de 

Max.  
de 

2*tree-
height 

Avg. 
diff. 
edg. 

Avg.  
diff. edg.  

[% All edg.] 
1 2 3 4 5 6 7 8 9 10 11 

c100 108 0.197 0.673 50.7% 65 0.317 0.650 0.561 20 18.8% 
c100b 110 0.347 0.540 37.0% 6 0.035 0.120 0.087 2 1.8% 
c120 127 0.020 0.714 55.5% 40 0.182 0.432 0.317 13 10.0% 
c150 162 0.296 0.679 51.4% 169 0.423 0.627 0.513 43 26.8% 
c199 216 0.237 0.701 54.0% 180 0.543 0.679 0.604 80 37.3% 
c50 55 0.167 0.605 43.4% 1 0.000 0.000 0.000 0 0.0% 
c75 85 0.117 0.688 52.4% 49 0.473 0.750 0.620 26 31.0% 
f134 141 0.160 0.633 46.3% 62 0.094 0.321 0.225 7 4.9% 
f71 75 0.237 0.477 31.3% 5 0.043 0.370 0.221 2 2.2% 
tai100a 112 0.083 0.595 42.3% 61 0.258 0.679 0.520 17 14.8% 
tai100b 111 0.238 0.610 43.9% 29 0.106 0.577 0.476 6 5.6% 
tai100c 111 0.246 0.625 45.5% 17 0.217 0.604 0.566 14 12.2% 
tai100d 111 0.178 0.609 43.8% 39 0.259 0.580 0.500 17 14.9% 
tai150a 165 0.009 0.627 45.7% 125 0.208 0.546 0.401 19 11.6% 
tai150b 164 0.072 0.663 49.6% 126 0.327 0.645 0.539 32 19.5% 
tai150c 165 0.190 0.629 45.9% 178 0.449 0.636 0.511 48 28.9% 
tai150d 164 0.042 0.636 46.6% 140 0.291 0.604 0.479 28 17.0% 
tai385 433 0.122 0.745 59.4% 180 0.439 0.606 0.524 122 28.1% 
tai75a 85 0.165 0.621 45.0% 15 0.112 0.547 0.510 5 5.9% 
tai75b 85 0.025 0.617 44.6% 17 0.182 0.534 0.422 9 10.0% 
tai75c 84 0.187 0.581 40.9% 2 0.004 0.069 0.069 0 0.2% 
tai75d 84 0.244 0.519 35.0% 6 0.045 0.320 0.300 2 2.3% 
Avg. - 0.163 0.627 45.9% 68.7 0.228 0.495 0.408 - 13.8% 

First important observation is that, on average, MAs generate only 68,7 different solutions of 
the CVRP for the total of 180 possible. This number might be the first indicator of the fact that 
solutions of these algorithms are similar to each other. Of course, there are differences between 
instances: some have more than this average (like c150, c199, tai150a-d, tai385), whereas others 
have less (the smaller instances). Moreover, the number of different solutions is not enough to 
prove that solutions are clustered in the search space or spread all over it. 

Further evidence for this conclusion is found while comparing distance de between RLO and 
between solutions of MAs. The values in columns 4 and 5 are provided here in order to facilitate 
comparison between these sets of solutions. Indeed, the comparison of columns 4 and 5 with 



corresponding columns 7 (or 8) and 11 indicates that solutions of MAs are always significantly 
more concentrated in the search space than random local optima; the difference between averages 
amounts to ∆de≈0,4 and ∆(% different edges)≈32%. Also in this case there are differences 
between instances. For some of them (indicated in bold in column 7) the gain in the average 
distance is very high (either the gain is >0,5 or the value in column 7 is <0,05 itself). For the 
others the gain is lower and the maximum distance between solutions of MAs has very similar 
value to Avg de in the sets of local optima (column 4), so the size of the search space which 
contains solutions of MAs is still rather large. This division of the set of instances implies a cut-
off value of 10% for the percentage of different edges (column 11): instances with this value 
lower than 10% have MAs solutions highly clustered, while the others still have significant 
differences between solutions perceived from the perspective of edges (tai75b is a borderline 
case). An example of the first type might be instance c120: there are, on average, only 13 
different edges between solutions of MAs. 

To summarize, it might be said that for 9 or 10 instances the solutions of MAs are highly 
clustered (from the point of view of de), which indicates ‘narrow valleys’ to be searched by 
optimisation algorithms based on preservation of edges (easy optimisation). In other cases (12 or 
13 instances) this clustering of solutions is weaker, indicating ‘wider valleys’ and relatively 
harder optimisation. The hardest instances seem to be: c199, c75, tai150c, tai385 and c150 which 
have on average more than 20% of different edges in solutions of memetic algorithms. 

Distance in terms of pairs of nodes: dpn. Table 5 contains statistics similar to those in Table 
4, but from the point of view of dpn. It does not contain, however, the values of distance 
computed as the numbers of nodes differently assigned to clusters. The author attempted to 
compute it, but failed to find an appropriate formula. Therefore, only the statistics on the distance 
dpn itself are reported. 

Comparison of columns 3 and 4 implies conclusions similar to those formulated in case of de: 
for 10 instances solutions of MAs are significantly closer to each other (on average) than random 
local optima (the gain in dpn is >0.5 or average dpn itself is <0,05). Those instances are indicated 
in bold in column 4 (9 of them are also indicated in Table 4). In case of the other instances the 
gain in average dpn is lower, which implies ‘wider valleys’ to be searched than in case of the 10 
instances mentioned above (which should be easy in optimisation by cluster-based algorithms). 
Additionally, 4 instances should be extremely easy from this point of view (c100b, c50, f71, 
tai75c), due to very low average dpn between solutions of MAs (<0,01). 

UPGMA clustering trees of solutions. A clustering tree generated by the UPGMA method 
(see [17]) is a way of visualizing relationships between objects which are described by a distance 
matrix. Four such trees generated from matrices of distance between solutions of MAs are shown 
in Figure 2 and Figure 3. 

In Figure 2 the trees are rendered horizontally, with root nodes on the left and leaf nodes on 
the right. Each leaf represents one CVRP solution generated by a certain algorithm; a label on the 
right describes the quality of a solution and the algorithm which produced it. Two nodes of each 
tree (not only leaves) are linked by a parabola on a certain distance level, as indicated on a ruler 
under each tree. This level of a link corresponds to the half of the average distance between 
linked elements (i.e. distance between solutions or clusters of solutions). If certain nodes are 
linked by vertical lines it means the distance between them is equal to zero. The height of a tree 
(the level of its root node) is approximately the half of the maximum distance between solutions; 



it is usually slightly lower than this maximum (compare columns 8, 9 in Table 4 and 5, 6 in Table 
5) due to the operation of averaging of distance performed while creating clusters of solutions. 
Additionally, all leaves in each tree are roughly sorted in ascending order of the objective 
function, from top to bottom (only if the structure of a tree allows such ordering to be made). 

Table 5. Comparison of solutions generated by memetic algorithms with distance dpn. 

Instance r2 
([10]) 

Avg. dpn 
([10]) 

Avg. 
dpn 

Max.  
dpn 

2*tree-
height 

1 2 3 4 5 6 
c100 0.126 0.731 0.416 0.774 0.703 
c100b 0.468 0.589 0.000 0.000 0.000 
c120 0.152 0.746 0.104 0.264 0.200 
c150 0.232 0.759 0.486 0.740 0.634 
c199 0.242 0.791 0.660 0.814 0.695 
c50 0.173 0.659 0.000 0.000 0.000 
c75 0.113 0.752 0.527 0.827 0.746 
f134 0.045 0.709 0.018 0.251 0.204 
f71 0.378 0.338 0.003 0.119 0.119 
tai100a 0.113 0.690 0.267 0.800 0.653 
tai100b 0.233 0.698 0.080 0.619 0.544 
tai100c 0.380 0.707 0.296 0.678 0.594 
tai100d 0.272 0.676 0.299 0.678 0.574 
tai150a 0.000 0.731 0.195 0.654 0.504 
tai150b 0.223 0.731 0.379 0.690 0.620 
tai150c 0.217 0.736 0.578 0.767 0.674 
tai150d 0.057 0.750 0.379 0.772 0.675 
tai385 0.158 0.861 0.453 0.694 0.612 
tai75a 0.156 0.715 0.135 0.661 0.599 
tai75b 0.075 0.732 0.251 0.611 0.442 
tai75c 0.258 0.682 0.002 0.032 0.032 
tai75d 0.277 0.549 0.036 0.459 0.458 
Avg. 0.198 0.697 0.253 0.541 0.467 

Figure 3 shows two large trees, with labels drawn only for 1 in 4 solutions because the trees 
contain 170 solutions generated by memetic algorithms (2 worst solutions of each algorithm were 
omitted); the previous trees contain only 35 solutions each. 

In each of the figures there is shown one example of a tree for highly clustered set of 
solutions and one example of a tree for solutions spread in the search space. 

The tree generated for instance tai385 and distance de (Figure 2, left) shows very different 
solutions: the height of this tree is 0.263 and, what is more important, levels of links between 
solutions are also very high, the smallest being around 0.1. The shape of this tree might be called 
‘wide and high’. On the contrary, the tree for tai75d and dpn (Figure 2, right) presents highly 
clustered solutions: although the height of this tree is 0.15, all solutions are in one of only 2 



clusters of identical solutions (from the point of view of dpn). The shape of this tree might be 
called ‘narrow and with wide leaves’. 

 

Figure 2. Sorted clustering trees for 7 best solutions of each of 5 memetic algorithms  
(35 solutions in total). Instance tai385, distance de (left) and tai75b, distance dpn (right). 

 

Figure 3. Sorted clustering trees for 34 solutions of each of 5 memetic algorithms (170 solutions in total). 
Instance c199, distance dpn (left) and tai75d, distance de (right). Only 1 in 4 solutions is labelled. 



Moreover, Figure 2 shows that solutions of different algorithms are mixed in the search space 
rather than clustered by the type of the algorithm (examine labels of linked leaves). This 
observation is independent on the hardness of an instance and was also made by the author in 
case of other instances, but the related trees are not shown here3. Nevertheless, this fact leads to 
the conclusion that all the memetic algorithms search in the same area of the solution space, 
independently on the crossover operator used. 

Trees in Figure 3 confirm the observations made earlier: solutions of instance c199 are hardly 
clustered with respect do dpn (see the height of the tree and individual links; also note the shape of 
this tree: ‘wide and high’), whereas solutions of tai75d are highly clustered with respect to de, the 
tree is ‘narrow and with wide leaves’ and with two worst solutions being distant to all others. 

7 Conclusions 
The conducted experiment and analyses indicate that not all instances reveal ‘narrow big valleys’ 
which could, in turn, make the search by optimisation algorithms easy (if such algorithms 
preserved certain properties of solutions). The easy instances are: c100b, c120, c50, f134, f71, 
tai100b, tai75a, tai75c, tai75d, and perhaps tai75b (de) and tai150a (dpn). The other instances 
reveal ‘wider valleys’, harder for optimisation. 

Another conclusion is that the crossover operators do not significantly influence the part of 
search space the algorithm with certain crossover aims at, because solutions of different 
algorithms (crossover operators) are mixed with each other. 

Further analyses also revealed that there is a relationship between quality of solutions 
generated by a certain algorithm and average distance between solutions of all algorithms. The 
author created rankings of instances with respect to average quality of solutions of each 
algorithm (based on columns 3, 5, 7, 9, 11 of Table 1) and also rankings of instances with respect 
to average distance de and dpn of solutions. Values of the Kendall’s tau coefficient for compared 
rankings (one algorithm vs. one distance) varied from 0.66 to 0.73, thus indicating high similarity 
of these rankings and tight relationship between average distance and quality. 
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