
Genetic Programming for Primitive-Based Acquisition

of Visual Concepts

Krzysztof Krawiec
1

1
 Poznań University of Technology, Institute of Computing Science, Poznań, Poland,

e-mail: krawiec@cs.put.poznan.pl

Abstract. We describe a novel method for acquisition of higher-level visual concepts us-

ing GP-based learners that process attributed visual primitives derived from raw raster im-

ages. The approach uses an original evaluation scheme: individuals-learners are rewarded

for being able to restore the essential features (here: shape) of the visual stimulus. The ap-

proach is general and does not require any a priori knowledge about the particular applica-

tion or target concept to be learned; the only prerequisite is universal knowledge related to

interpretation of visual information, encoded in nodes of GP trees. The paper demonstrates

the performance of the method on a specific visual task of acquiring the concept of a trian-

gle from examples given in a form of raw raster images.

1 Introduction

The primary motivation for research described in this paper is the lack of a general and widely

applicable methodology for automated design of pattern recognition (PR) and computer vision

(PR) systems. Manual development of such systems is for most real-world tasks tedious, time-

consuming and expensive. The handcrafted solutions are usually limited in their scope of appli-

cability and have poor ability to adapt, i.e., to perform visual learning.

In authors’ opinion, visual learning is the only way to build application-independent systems

with the ability to understand a broad class of images. However, in most approaches to visual

learning reported in literature, learning is limited to parameter optimization that usually concerns

only a particular processing step, such as image segmentation, feature extraction, etc. Reports on

methods that synthesize complete object recognition systems starting from raw image data are

rather scant. Most of them are also application-specific that makes the acquired knowledge diffi-

cult or, in most cases, impossible to transfer to other recognition tasks and applications.

Moreover, contemporary research on learning in CV/PR is focused mainly around numerical

or subsymbolic paradigms. For instance, in the area of cognitive science, neural methods domi-

nate the topic. In other approaches, it is common to extract from the image a predefined (and

often large) set of numerical features and feed them into standard machine learning algorithms.

Such features are usually tailored to a specific application. Attempts to approach visual learning

in a more symbolic way are rather scant – the most prominent example would be here syntactic

1
 This work has been supported by KBN research grant 3 T11C 050 26.

pattern recognition, which is, however, known for some limitations (difficult learning, high sensi-

tivity to noise, and imprecision in image data).

We claim that visual learning needs stronger reference to symbolic approaches and effective

search heuristics like evolutionary computation (EC); in particular, the possibility of the encapsu-

lation of earlier acquired concepts (like module acquisition in Genetic Programming (GP)) seems

to especially appealing for gradual acquisition of visual concepts (developmental learning). By

‘symbolic’ we mean here recognition systems that analyze, process, and interpret visual informa-

tion using some elementary operators that refer to basic common-sense and mathematical con-

cepts. To meet this objective, in this paper we propose a visual learning paradigm where both the

processing (image recognition system) as well as input/training data (image representation) are

defined in a symbolic way. In particular, each learner, implemented as a GP individual, works

with visual primitives (VPs) that represent local salient features derived from the raw input raster

image. It processes such visual information using a sequence of predefined yet general operators

which represent background knowledge. Most importantly, the final result of the learner’s com-

putation is also given in a symbolic form.

The proposed method allows for building general, higher-level visual concepts by grouping,

selecting, aggregating the visual primitives, and defining new attributes that describe them. It

provides a gradual transition from subsymbolic raster image data to higher-level visual concepts.

By working directly with VPs rather than with some predefined scalar features derived from the

image, the learners conform also the principle of least commitment [8]. Moreover, the symbolic

setting significantly speeds up the processing of visual information, as the volume of visual

primitives data is usually only a fraction of that of the raster image from which they have been

derived. This feature is extremely important from an EC viewpoint, as the learning process main-

tains a large population of visual learners which are evaluated on a set of training images.

Nevertheless, the major benefit from symbolic representation and the main novelty of the

method described here is that learner’s response to the input image may be interpreted in a mean-

ingful manner. It allows us to construct learner’s interpretation of the input stimulus and evaluate

it with respect to simplicity and accuracy (conformance) when compared to the input image. We

define appropriate criteria that measure these features of learner’s response and build up a mul-

tiobjective fitness, which in turn drives the evolutionary search. Such interpretation enables us to

close the feedback loop of the learning process, i.e., to assign an appropriate fitness to each learn-

ing individual, despite the fact that the learning is unsupervised in the sense that there is no extra

information on desired output produced by the learner. Thus, to some extent, the method de-

scribed here may be attributed as generative.

Thanks to generic representation of visual data and to the unsupervised nature of the learning

process, the proposed approach is application-independent and abstracts from any specific task

like recognition, identification, or tracking. Though CV/PR achievements in selected applications

like face recognition, fingerprint classification, or aerial imagery, are unquestionable, they are

extremely application-oriented and require lots of domain-specific knowledge. It is only thanks

to immense human effort in designing/choosing the appropriate image processing and analysis

procedures, that such recognition systems are able to solve the recognition tasks they have been

designed for. It is difficult to see how the knowledge encoded in such systems could contribute to

the actual understanding of generic visual information.

The original contributions of this paper may be summarized as development of a novel vari-

ant of typed genetic programming that (i) is customized to process visual primitives (VPs) by as

basic ‘granules’ of visual information, and (ii) uses the ability to restore essential features of the

input image to guide the evolutionary learning.

The following Section 2 briefly summarizes the related work on the topics of visual learning

and visual evolutionary learning. Then, in Section 3 we thoroughly describe the proposed ap-

proach. Section 4 demonstrates the performance of the approach on a visual task of acquiring a

simple yet nontrivial higher-level visual concept. In Section 5, we provide a summary and draw

conclusions for further research.

2 Related Work

In most approaches to visual learning reported in the literature, learning is limited to parameter

optimization that usually concerns a particular processing step, such as image segmentation,

feature extraction, etc. Only limited number of methods close the feedback loop of the learning

process at the highest (e.g., recognition) level [1][2][4][6][7][9][10][12]. Also, reports on ap-

proaches that learn using raw images as training data, and, therefore, produce the entire object

recognition system, are rather scant. Moreover, some of the proposed methods make use of do-

main-specific knowledge and are highly specialized towards a particular application.

In our previous work, we applied the idea of symbolic processing of attributed visual primi-

tives to the specific supervised learning task of recognizing objects (computer screens) in office

scenes. Though the approach produced interesting results, it was obvious that learning from such

specific task cannot lead to elaboration of more general visual concepts, which, in turn, would be

useful in solving potentially wider range of visual learning tasks.

3 Symbolic Primitive Learning

3.1 Processing Visual Primitives

In the proposed method, the learning takes place in an evolving population of visual learners

encoded as GP individuals (expression trees). In general terms, we define a visual learner as an

entity which is able to process visual data represented as a set P of attributed visual primitives

(VPs for short); let Ω denote the space of all such representations. Each individual is evaluated

based on the results it produces when applied to a set of training images (examples) S. In ma-

chine learning terms, S represents the target concept to be learned (or, precisely, a finite sample

of such a concept). The learner is stimulated by each training image s∈S independently. In re-

sponse to s, it produces its representation, expressed also in terms of VPs.

 The processing carried out for each learner (GP individual) L and for each training image

s∈S is outlined in Fig. 1. In the diagram, Ps, Ps∈Ω, denotes the set of VPs derived from the

original training raster image s∈S (visual stimulus). The algorithm does not make any assump-

tions about the particular form of visual primitives. Reasonable instances of VPs include edge

fragments, regions, or blobs. In the variant of our approach presented in this paper, VPs represent

short edge fragments detected in s by straightforward image processing (see Section 4).

Each VP p∈Ps is described by a vector of scalars called hereafter primitive attributes; in this

paper, this vector encompasses the coordinates of the edge fragment (px and py), and edge orien-

tation po. Attribute values are derived from local features of the input raster image s. As this step

is fixed and common for all learners, it is carried out prior to the evolutionary run and the Ps’s are

cached for all images s∈S to reduce time complexity of evolutionary run. The technical details on

this process are provided in Section 4.

In Fig. 1, L(Ps) denotes the representation of image s produced by the learner L. This repre-

sentation is also defined in terms of VPs. In this paper, we assume L(Ps) to be a hierarchy of sets

of primitives derived from Ps. In other words, L(Ps) is a hierarchical set of VPs (a tree of nested

sets of VPs) built by L atop of Ps. The nodes of the hierarchy encapsulate (group) other nodes

from L(Ps) and VPs from Ps. The learner L may also assign some new attributes to any nodes of

hierarchy, in addition to the original primitive attributes of VPs. The particular structure and

contents of that hierarchy determines the fitness assigned to L in the way described in the follow-

ing subsection.

Figure 2 illustrates an example of VP L(Ps) representation produced by a learner L in re-

sponse to input image/stimulus s. In the left part of the figure, the short edge fragments denoted

by capitals represent the original VPs derived from the input image s, which in total build up Ps.

The dashed-line shapes depict L(Ps); in particular, each of the shapes denoted by p1, p2, p3, and

p4, corresponds to a single VP created by the learner. In the right part of Fig. 2, the VP hierarchy

is shown in an abstract way, without referring to the actual placement of particular visual primi-

tives in the input image. In both parts of the figure, the primitive attributes of VPs are not shown

for clarity. Note that the hierarchy does not have to contain all VPs from Ps, and that a particular

VP from Ps may occur in more than one branch of the hierarchy tree.

3.2 Fitness Estimation

The representations L(Ps) produced by the learner for all training examples s∈S constitute

learner’s L acquired concept. To estimate L’s fitness, its acquired concept has to be confronted

with the target visual concept. In supervised learning, this is usually done by assessing how well

the learner discriminates the training examples representing different classes of concepts from

each other. Such an approach has, however, some drawbacks. First of all, it requires a priori

labeling of visual stimuli, which is tedious and time-consuming. Existing labeled image collec-

tions are usually tailored towards recognition of very complex objects like humans or cars (see,

e.g., the MIT-CSAIL database [13]). The knowledge acquired while learning such specific tasks

is difficult to generalize to/apply in other visual learning tasks.

Secondly, the immense number of degrees of freedom available to the learners, resulting from

the vast space of GP solutions that may be considered during search, increases significantly the

risk of overfitting. In our past experience with evolutionary design of pattern recognition systems

synthesized in a supervised way, an evolved recognition system would often found its decision

on an irrelevant feature of the input image, which was coincidentally correlated with the actual

partitioning of training examples into concepts. Such overfitting can be fought by constraining

the search space and/or GP procedure representation, however, such an intervention requires

background knowledge and is somehow arbitrary.

Preprocessor s L Ps Interpreter L(Ps) IL(s)

Figure 1. The processing of visual information for a particular learner/individual L.

But most importantly, the supervised setting of the learning process requires making, in our

opinion a very arbitrary, decision about learner’s desired output/response for particular input

examples or target concepts. When the learner implements a machine learning classifier, this

requirement is in a natural way imposed by a particular type of knowledge representation (e.g.,

desired combination of output layer excitations for an artificial neural network). However, appli-

cability of such learning methods is limited to simple recognition tasks with a limited number of

concepts to be learned. For more complex objects and for large numbers of concepts to be ac-

quired, special means have to be applies (e.g., explicit building of object models and model-based

approach).

The supervised setting imposes therefore undesired biases on the learning process, which in

turn impact the generality of the evolved solutions. To avoid bias toward particular recognition

tasks and to evolve learners who are able to recognize more general visual concepts, the learning

process proceeds here in an unsupervised mode in the sense that the learner is not explicitly told

what is the particular contents of output it should produce. Rather we reward the learners for

elaborating acquired concepts that are both simple and accurate.

The simplicity criterion, denoted in following by fsim(), is motivated by Occam’s razor princi-

ple and by the obvious observation that simple concepts usually generalize better. The way we

determine the accuracy facc() of the acquired concept with respect to the target concept is the

central idea of the proposed approach: facc(L) measures to what extent it is possible to recon-

struct/restore the essential features of the training example s∈S using the image representation

L(Ps) produced by the learner L. To this aim, we introduce an Interpreter (see Fig. 1), which

produces a reconstructed image IL(s) based on L(Ps). The reconstructed image IL(s) is then com-

pared to the original image s.

Even without providing technical details, one can easily conclude that criteria fsim() and facc()

are conflicting. To compete with other learners in the population on fsim(), the learner tends to

elaborate such representations L(Ps) that make the Interpreter produce output that is simplified in

comparison to Ps, as far as information contents is concerned (e.g., the Interpreter reproduces

only the most salient features of Ps). On the other hand, to be able to restore the essential features

of the input stimuli, L has to provide the resulting representation L(Ps) in enough information

(hierarchy nodes and attributes), which inevitably deteriorates its evaluation on fsim().

When understanding the accuracy criterion literally and without providing any extra means,

these criteria must be contradictory: any attempt to reduce the size of representation results in

p2

p4

p3

p1

p1

p2 p3 p4

A

B

C

D

E F

A B C D E F

G

Figure 2. The primitive hierarchy built by the learner from the visual primitives, imposed in the image

(left) and shown in an abstract form (right); VP attributes not shown for clarity.

loss of accuracy. However, the tightness of this trade-off is significantly alleviated by the follow-

ing two assumptions.

1) Firstly, we do not expect the learner to produce an acquired concept that enables restora-

tion of all information contained in the original training image s. Rather than that, we limit our

interest to only one aspect of visual stimuli, shape in the current variant of our approach. Other

features, like color or texture, are ignored. We also limit our interest to 2D visual stimuli, thus

other aspects related to perception of 3D scenes, like depth, shading, etc., are ignored. facc() meas-

ures only how well does the Interpreter restore the shape of the input stimulus s given L(Ps).

2) Quite obviously, the Interpreter has to be equipped with some means of producing the re-

constructed image IL(s). For this purpose, we assume that the Interpreter may literally draw sim-

ple graphical primitives on a ‘canvas’ and that the result of that drawing is returned as IL(s). As in

this paper we focus on shape, we let the Interpreter draw only the simplest possible graphical

primitives: sections.

The coordinates of section ends drawn by Interpreter are retrieved from L(Ps). The problem

which arises at this point is which nodes of the L(Ps) hierarchy should be interpreted as section

ends. Though one could come up with various arbitrary methods for retrieving coordinate data

from L(Ps), any such choice would introduce unnecessary bias into the learning process. To avoid

that, we let the learner decide what parts of the output it produces should be drawn by the Inter-

preter. Technically, we introduce an extra GP node (Draw) which does no processing but ‘tags’

the selected part of the produced L(Ps). Interpreter then traverses L(Ps) and draws sections

spanned over tagged nodes.

A very important advantage of such an approach is that the individual/learner L together with

the Interpreter produces a ‘rich’ output IL(s) in response to the input stimulus, as opposed to, for

instance, the case of supervised learning, where individuals produce decision class labels or sca-

lar features. In such a way, the individual undergoes a more thorough evaluation, which is, in a

sense, based more on the actual contents of L(Ps) rather than on its quality.

To search the space of GP solutions in a more thorough manner, we split the facc() criterion

into two maximized criteria: ftp() and ffp(), which separately reflect the two types of errors that

may be committed by Interpreter when trying to restore the shape of the input stimulus. The

criterion ftp() measures the true positive ratio that depends on the cumulative brightness of pixels

that belong to the target object and have been lit by the Interpreter. The criterion ffp() computes

the false positive ratio. Formally,

∑ ∑
∈ >∈

−=
Ss yxsIsyx

L

L

tp

L

yxsIyxs
sIS

Lf
0],)[(,),(

)0],,)[(],[max(
|)(|

1

||

1
)(, (1)

and

∑∑

>∈∈

−
−

−=
0],)[(,),(

)0],,[],)[(max(
|)(|||

1

||

1
1)(

yxsIsyx

L

Ss L

fp

L

yxsyxsI
sIsS

Lf , (2)

where s[x,y] denotes the brightness of pixel (x,y) in the training image s, and IL(s)[x,y] denotes the

brightness of the corresponding pixel in the Interpreter’s output. The terms preceding summa-

tions serve for normalization: |S| is the number of training images, and |IL(s)| and |s| denote the

total cumulative brightness (sum) of all pixels lit by the Interpreter and lit in the input image s,

respectively.

The following properties of ftp() and ffp() need emphasizing:

1) Computing of both ftp() and ffp() requires considering only those pixels which have been

drawn by the Interpreter (condition IL(s)[x,y]>0 in formulas (1) and (2)). These pixels constitute

in most cases only a tiny fraction of the image. This reduces significantly the time of fitness

computation.

2) Rather than on the number of pixels being lit, the criteria rely on pixel brightness. This

makes them more continuous and improves the convergence of the evolutionary run, especially

when the input image is not binary but gray-scale (what is the case in the experiment described in

the following).

3) The ftp() criterion is designed in such a way that it rewards an individual for ‘drawing’ sec-

tions that restore the shape the original image s. However, when Interpreter draws multiple sec-

tions that traverse the same pixel [x,y], its brightness IL(s)[x,y] increases (technically, we use the

‘alpha’ transparency channel for that purpose). Thus, drawing sections that overlap (partially or

completely) does not pay, as it decreases the value of the IL(s)[x,y]-s[x,y] term. The individual is

therefore penalized for superfluous sections. The ffp() criterion has an analogous property.

The fact that ftp() and ffp() criteria penalize an individual for commanding the Interpreter to

draw superfluous sections inclined us to give up using an explicit simplicity criterion in the ex-

periment described in Section 4. In a sense, the particular criteria definitions in formulas (1) and

(2) cause the simplicity to be implicitly comprised by ftp() and ffp()
2
.

3.3 Representation of Individuals

For representation of solutions, we choose a variant of GP expressions [3]. Each learner is a GP

tree with nodes representing elementary operators that are able to process sets of visual primi-

tives. The tree fetches the VP representation Ps of the input image s using some of its terminal

nodes and processes that representation, building consecutive levels of primitive hierarchy L(Ps)

on top of it. During that process, particular tree nodes introduce new primitives by aggregation

(encapsulation) of VPs, perform selection of primitives using constraints imposed on attributes or

other properties of primitives, and add new attributes to visual primitives on the arbitrary level of

hierarchy. And, last but not least, the GP procedure may mark selected VPs in the created hierar-

chy for the Interpreter, to be drawn during interpretation process.

Technically, we use strongly-typed GP [3] with following elementary types: numerical sca-

lars (ℜ for short), nested sets of VPs (Ω), attribute labels (A), binary arithmetic relations (R), and

aggregators (G). We also define appropriate types of GP operators (nodes) that are able to handle

particular types of data. The current specification of the approach includes two non-terminal

operators: one producing an ephemeral random constant (type: ℜ), and one producing the VP

representation Ps of the input image s (type: Ω). The non-terminal GP operators used in this ap-

proach may be divided into the following categories:

1) Scalar operators (as in standard GP applied to symbolic regression; see [3]). Scalar opera-

tors accept argument(s) of type ℜ and return result of type ℜ. The following scalar operators are

currently implemented: +, -, *, /, sin, cos, abs, sqrt, and sgn.

2
 One should note, however, that there exist theoretical ‘malign’ solutions that lead to complex interpreta-

tion yet have relatively high values of ftp() and ffp(). For instance, a straight line in the original input im-

age s may be represented in IL(s) by a chain of sections spanned over consecutive VPs that have been

derived from that line. Nevertheless, due to partial overlap of such sections, the evaluation of such a so-

lution would be still inferior to a simpler interpretation composed a single section.

2) Selectors. The role of a selector is to filter out some of the VPs it receives from its child

node(s) according to some criteria or condition. Selectors accept at least one argument of type Ω

and return result of type Ω. Non-parametric selectors expect two child nodes of type Ω and pro-

duce an output of type Ω. Operators that implement basic set algebra, like set union, intersection,

or difference, belong to this category. Parametric selectors expect three child nodes of types Ω,

A, and ℜ, respectively, and produce output of type Ω. For instance, the operator LessThan ap-

plied to child nodes ({p1, …, pn}, po, 0.3) filters out all VPs from {p1, …, pn} for which the value

of the attribute po (orientation) is less than 0.3. When an inner node of the VP hierarchy is que-

ried by a GP operator for attribute value, it computes that value by averaging the values of attrib-

utes of the VP primitives it contains. The current set of operators includes the following selec-

tors: SetIntersection, SetUnion, SetMinus, SetMinusSym, GroupProximity, Ungroup, Selector-

Max, SelectorMin, SelectorCompareConstant, and Draw. The set of binary relations that may be

used by selectors includes: Equals, EqualsPercent, Equals10Percent, Equals20Percent, LessT-

han, and GreaterThan. The aggregators include: Sum, Mean, Product, Median, Min, Max, and

Range.

3) Iterators. The role of an iterator is to process the VPs it receives from one of its children

separately, one after another. Currently, there are two iterators implemented: ForEach and

ForEachCreatePair.

4) Attribute constructors. The task of an attribute constructor is to assign a new attribute to

the VPs it receives from its left child subtree. The new attribute that is to be added to VP is de-

fined by the right child subtree of attribute constructor. To compute the value of a new attribute,

an attribute constructor passes the VP through that subtree. That computation must be based on

the values of the existing attributes; this is ensured by the leaves of the attribute definition sub-

tree, which return the values of the defined attributes. Currently, two types of attribute construc-

tors are included in the implementation of the method: AddAttribute and AddAtributeForEach.

The former one operates on the top level (root node) of VP hierarchy and adds the new attribute

to that node only. The latter one, on the contrary, performs the attribute creation for all VPs.

Attribute constructors return result of type Ω.

The detailed description of all operators implemented in our method is beyond the scope of

this paper and will be presented in a separate research report.

4 The Experiment

4.1 The Task and Training Data

The objective of the experiment is to demonstrate our method on a task of acquiring a target

visual concept of a triangle. The triangle concept is nontrivial and requires sophisticated design

from the evolutionary learner, but at the same time the evolved solutions may be still relatively

easily interpreted and verified by humans.

To attain the learning goal, the evolutionary process has to evolve a learner that is able to

identify (e.g., select or create) the VPs representing triangle vertices and span appropriate sec-

tions on them by introducing marking tags for the Interpreter. This task, though straightforward

for humans, is not that simple: remember that the only input the learner receives is Ps, a ‘flat’ set

of a few dozens of VPs described by locations px, py and local gradient orientation po. The learner

has no a priori information on, e.g., spatial proximity of VPs, their collinear alignment, etc. The

VPs located at triangle vertices are not marked as ‘special’ in any way; the learner has to ‘dis-

cover’ them by building an appropriate GP program.

We prepared a training set S containing 20 triangles of different sizes, shapes, and orienta-

tions, each placed in a random location on raster image of 640×480 pixels. Figure 3(a) illustrates

all the training examples, shown for brevity in one image; note however, that each triangle con-

stitutes a separate training example s∈S. Though these examples have been created in an artifi-

cial way, a real-world picture of such object would produce similar result.

In the preprocessing phase that transforms an input image s into its representation Ps, we ex-

tract candidate VPs from s based on local magnitude. Then, the obtained candidate locations are

sorted with respect to decreasing magnitude, and at most 80% of most prominent of them are

included into the primitive representation. Also, to filter out the less prominent candidates, we

impose a lower limit dmin on the mutual proximity of VPs. The VP candidates are processed se-

quentially with respect to the decreasing magnitude, and a new primitive p may be added to Ps

only if there is no other primitive already in Ps closer than dmin, i.e., there no p’∈ Ps such that

||p,p’|| < dmin.

The resulting image representation Ps is usually several orders of magnitude more compact

than the original image s. On the other hand, the essential sketch of the input image z is well

preserved. Figure 3(b) shows, the VP representation Ps derived from one of objects from Fig.

3(a). Each segment depicts a single VP, with its (x,y) coordinates located in the middle of the

segment and the orientation depicted by slant.

As we aim at acquiring a general concept of triangular shape, the issue of precision in inter-

pretation is of secondary importance. Also, original VPs in Ps have discrete coordinates, which

are not always perfectly consistent with the actual location of triangle pixels due to rounding

errors in the preprocessing phase. Some preliminary evolutionary runs have shown that this issue

may severely impact the convergence of the algorithm: individuals that restore the overall shape

pretty well would receive low fitness due to minor imprecision of the Interpreter’s drawing with

respect to the input image. For these reasons, for the purpose of ftp() and ffp(), we do two things:

we ‘fuzzyfy’ the input images s∈S by passing them through a lowpass filter. On the other hand,

the sections drawn by the Interpreter are also drawn with stroke width equal to 3.

4.2 Evolutionary Algorithm Settings

With the solutions encoded as GP individuals and fitness function as described in Section 3.2 we

performed an extensive series of preliminary experiments to investigate the characteristics of the

evolutionary learning. In this contribution, we presented selected results obtained from a typical

 (a) (b)

Figure 3. The training set (a) and the VP representation Ps of one of the examples (b, magnified).

run of the method. We use a generative evolutionary algorithm, for 100 generations with popula-

tion of 2000 individuals. As any aggregation of ftp() and ffp() criteria would be arbitrary and in-

volve undesired compensation, we rely on multiobjective evaluation of individuals/learners in the

GP run. We use selection method based on Pareto-ranking: after the evaluation phase, the indi-

viduals are being ranked using dominance relation from the best to the worst rank. Then, the

selection operator randomly selects an individual from r
th
 rank (r=1,2,…) with probability γ/2

(r-1)

(we used γ=0.6 in experiments). The initial population is populated using Koza’s standard

ramped half-and-half operator with ramp from 2 to 6 [3]. Following generations of individuals

are created by crossing over the selected parent solutions from previous generation (with prob-

ability 0.5), mutating selected solutions (with probability 0.4), or copying individuals from the

previous generation (probability 0.1). The GP tree depth limit is set to 8; the mutation and cross-

over operations may be repeated up to 5 times if the resulting individuals do not meet this con-

straint.

The framework for processing of visual primitives and the learning algorithm have been im-

plemented in Java programming language, with help of the ECJ package [5] and Java Advanced

Imaging library [11]. For evolutionary parameters not explicitly mentioned here we used their

default values as specified in ECJ.

As estimation of ftp() and ffp() requires considering only those pixels which have been drawn

by the Interpreter, the fitness estimation is fast and takes approx. 12ms per individual for our

Java-based implementation running on 3.0 GHz Pentium processor. This is also due to the low

number of primitives in the input representation Ps, which, for the learning task considered here,

amounted to 30.3 on the average.

4.3 The Results

Figure 4 shows examples of output produced (drawn by the Interpreter) for three selected Pareto

non-dominated individuals evolved in preliminary generations of the evolutionary run. Similarly

to Fig. 3(a), this and following figures show the result for the entire training set superimposed in

one picture. Dashed lines represent the input examples s∈S, whereas continuous lines show the

output IL(s) drawn by the Interpreter when applied to the representation L(Ps) produced by the

individual. The pixel intensity (darkness) of the latter lines reflects overlapping of multiple sec-

tions, and influences the fitness value (see Section 3.2).

Though, in theory, both criteria range from 0.0 to 1.0 inclusive, the ftp() criterion usually does

not draw near 1.0 due to the fact that the primitives are seldom placed precisely in the vertices of

the recognized objects. It is then difficult for the evolutionary process to elaborate solutions that

Figure 4. The output of three non-dominated solutions from generation 3 (left, fitness [0.118,0.981]) and

generation 10 (middle, fitness [0.246,0.997], right, fitness [0.134,0.9998]).

span the recognized object precisely at the vertices. Nevertheless, thanks to the fuzzyfication of

criteria described in Section 4.1, and thanks to the fact that the selection method takes into ac-

count only the ordering of the solutions on particular criteria, this does not seem to affect the

convergence of the algorithm.

Figure 5 depicts the outputs obtained from selected well-performing non-dominated individu-

als found in the 40
th
 generation of the evolutionary run. The bottom part of the figure represents

one of the best individuals evolved in the run, which correctly identifies 7 out of 10 triangles.

Note that all three incorrectly identified triangles share common feature: an almost vertical right-

end edge. As a matter of fact, in 2 of these cases this edge is drawn thrice by the Interpreter.

The figures demonstrate well that the solutions elaborated in preliminary generations produce

representations that use too many (Fig. 4 left) or too few (Fig. 4 right) sections. During the evolu-

tionary run, the selective pressure promotes solutions that are almost optimal (Fig. 5 right). Ob-

viously, the figures depict only a fraction of a wide range of non-dominated solutions; for in-

stance, in each generation there is usually a significant fraction of solutions that do not produce

any drawing (i.e., do not mark any nodes in the representation hierarchy L(Ps) to be drawn by the

Interpreter).

5 Conclusions

We demonstrated the possibility of evolving an image understanding system that is able to rea-

sonably interpret compound patterns present in observed images. This result has been obtained

using very limited background knowledge, contained in GP operators and in the ability of the

Interpreter to restore the shape of the analyzed object using the a simple primitive (section). The

method elaborates symbolic concepts of the objects to be recognized, which potentially enables

further re-use in more advanced visual learning tasks.

The approach seems to be general enough to work similarly well for other aspects of visual

information, like regions or texture. It would be quite straightforward to apply the method to such

data; essentially, only primitive definition would change in such a case. In perspective, some

integration of different aspects of visual stimuli is also possible.

The recognition systems (i.e., selected non-dominated GP individuals) L1, L2, …, Lm, evolved

for various target concepts T1, T2, …, Tm, may be used for interpreting an unknown contents of a

new image x, including recognition (classification). For this purpose, we propose the following

classification procedure. The image x is first processed by recognition systems L1, L2, …, Lm as

shown in Fig. 1. Then, the resulting interpretations IL1(x), IL2(x), …, ILm(x), undergo fitness esti-

mation described in Section 3.2. Finally, the obtained fitness values [ftp(L1), ffp(L1)],

Figure 5. The output of two non-dominated solutions from generation 40 (left, fitness [0.326,0.997])

(right, fitness [0.242,0.9997])

[ftp(L2), ffp(L2)], …, [ftp(Lm), ffp(Lm)], are mutually compared. If any evaluation [ftp(Li), ftp(Li)]

strictly dominates all other evaluations, this would unambiguously indicate target Ti as the ‘class’

that x most probably belongs to. In other words, Li provides the most accurate and the simplest

‘theory’ for explaining the actual contents of x. Other cases, with multiple non-dominated evalua-

tion, would require an extra disambiguation procedure.

The visual concepts elaborated in the learning process could be used as an initial knowledge

base for visual learners applied to other visual learning tasks. The ultimate objective of our re-

search is to elaborate a methodology for developmental learning of visual concepts of gradually

increasing complexity. In such a case, the learning process would face a sequence of learning

tasks, with each learning task devoted to a particular visual concept to be learned/acquired, as

described in this paper. In such a setting, the learners make use of visual concepts acquired in

previous learning tasks; we plan to adapt a variant of GP-based module acquisition technique for

that purpose.

References

[1] Draper, B., Hanson, A., Riseman, E. (1993) “Learning blackboard-based scheduling

algorithms for computer vision,” International Journal of Pattern Recognition and Artifi-

cial In-telligence, vol. 7, 309–328, March.

[2] Johnson, M.P., Maes, P., Darrell, T. (1994) “Evolving visual routines,” in: R.A. Brooks,

P. Maes (red.) Artificial Life IV: proceedings of the fourth international workshop on the

syn-thesis and simulation of living systems, Cambridge, MA: MIT Press, 373–390.

[3] Koza, J.R., Andre, D., Bennett III, F.H., Keane, M.A. (1999) Genetic Programming III:

Darwinian Invention and Problem Solving. San Francisco, CA: Morgan Kaufman.

[4] Krawiec, K., Bhanu, B.: Visual Learning by Coevolutionary Feature Synthesis. IEEE

Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics 35 (2005) 409–425

[5] Luke, S. (2002) “ECJ Evolutionary Computation System,”

http://www.cs.umd.edu/projects/plus/ec/ecj/.

[6] Maloof, M.A., Langley, P., Binford, T.O., Nevatia, R., Sage, S. (2003) “Improved roof-

top detection in aerial images with machine learning,” Machine Learning, vol. 53,

157–191.

[7] Marek, A., Smart, W.D., and Martin, M.C. (2003) “Learning Visual Feature Detectors

for Obstacle Avoidance using Genetic Programming,” In Proceedings of the IEEE Work-

shop on Learning in Computer Vision and Pattern Recognition, Madison, WI.

[8] Marr, D. (1982) Vision. W.H. Freeman, San Francisco, CA.

[9] Rizki, M., Zmuda, M., Tamburino, L. (2002) “Evolving pattern recognition systems,”

IEEE Transactions on Evolutionary Computation., vol. 6, 594–609.

[10] Segen, J. (1994) “GEST: A learning computer vision system that recognizes hand ges-

tures,” In: R.S. Michalski and G. Tecuci (ed.) Machine learning. A Multistrategy Ap-

proach. Volume IV, San Francisco, CA: Morgan Kaufmann, 621–634.

[11] Sun Microsystems, Inc., (2001) “Java Advanced Imaging API Specification”, Version

1.2.

[12] Teller, A., Veloso, M.M. (1997) “PADO: A new learning architecture for object recogni-

tion,” In: K. Ikeuchi and M. Veloso (ed.) Symbolic Visual Learning, Oxford Press,

77–112.

[13] Torralba, A., Murphy, K.M., Freeman, W.T. (2004) “MIT-CSAIL Computer vision an-

notated image library”, http://web.mit.edu/torralba/www/database.html.

