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Abstract. The paper gives two theorems for the asymptotic correctness of an
evolutionary algorithm (EA) that processes chromosomes from an arbitrary Ba-
nach space. It is argued that even if the mutation cannot yield an arbitrarily
far offspring, the EA may be asymptotically correct provided that the selection
is nonelitist and each feasible individual may reproduce with nonzero probability.
An illustrative example accompanies the paper.

1 Introduction

When considering a stochastic optimization method one is interested in its asymptotic
correctness [5, 8]. This property means that the optimization method will generate at
least one point in each arbitrary subset of the search space when the iteration number
goes to infinity. When a method is asymptotically correct, the probability that it will
generate at least one point arbitrarily close to the global optimum approaches one, as
time increases.

This paper is devoted to asymptotic correctness of an evolutionary algorithm (EA)
and its implication for the convergence analysis. Convergence of the EA was extensively
discussed by many authors. Most of the work was focused on EAs of a special type, and
different mathematical approaches were used for proving this property. Characterization
of all approaches to modeling EA behavior falls far beyond the scope of this paper,
therefore we will name only few of the most widely known.

In the field of genetic algorithms (GA) with binary chromosomes, schema theorem
[4, 9] was the first attempt to explain their behavior. According to this theorem, sets of
chromosomes (defined by similarity patterns called schemata) with higher average fitness
value are allocated higher expected number of copies in the next generation. Thus,
through subsequent generations, a tendency is expected for the percentage of schemata
with higher average fitness to increase. Another approach to modeling the GA with
binary encoding was based on the theory of the Markov chains [8, 10]. The GA is
modeled as a random process in a specific space of states. Each state is identified by the
vector of bits created by setting all chromosomes in the population one after another.
It is proved that under certain conditions there exist absorbing states of such random
process and each absorbing state represents a population containing the chromosome
with the best fitness.



In the field of evolution strategies, convergence analysis is usually based on direct
computation of the probability of generating a point in the neighborhood of the global
maximum. Perhaps the most widely known result is that the best point in the population
of an elitist (u+ A) strategy will converge almost surely to the neighborhood of the global
maximum provided that the mutation distribution is positive defined (e.g. Gaussian)
[7, 8].

The theoretical results mentioned above considered special types of EA, where chro-
mosomes are either vectors of bits or real numbers. On the other hand, a variety of
chromosome encoding methods has been proposed, and it seems that the ability to pro-
cess solutions represented in a nonstandard, usually problem-specific way, is one of the
main advantages of EA [2, 6]. Therefore there is a need for a theory that will explain
the behavior of an EA in a more general way in order to understand such nonstandard
cases.

In this paper a measurable Banach space is considered. Such space is sufficiently
general to include all chromosome representations that maintain a constant set of pa-
rameters. The paper gives and discusses two alternative theorems of the EA asymptotic
convergence, based on different assumptions. In the first theorem, mutation is assumed
to have its distribution positively defined in the whole search area, and no restriction on
the selection is made. The second theorem makes weaker assumptions about the muta-
tion distribution, but the nonelitist soft selection (i.e. nonzero probability of reproducing
any individual) is required instead.

Organization of the paper is as follows. Section 2 introduces briefly the concept of
Banach space and the asymptotic correctness property. Section 3 introduces the EA
probabilistic model and gives two asymptotic correctness theorems for EA processing
chromosomes from an arbitrary Banach space. Section 4 illustrates few selected practical
issues concerning the Gaussian mutation in R™. Summary and conclusions are provided
in Section 5.

2 Basic concepts

2.1 Banach space

A space S is called Banach space if it is linear, normed, metric, and complete. Lin-
earity means that there are defined operators of addition + : S x S — S and
multiplication - : R x S — S. The following properties hold:

Vx,y € S Xx+y=y+x (1)
Vx,y€S,aeR a-(x+y)=a-x+a-y (2)
vx e S x=1-x (3)

Elements of S are called vectors and denoted with boldface. There also exists an
unique zero element 0 € S such that

vx e S 0+x=x (4)
We can define subtraction and negation as follows

d=x-yiffx=y+d (5)
—-x=0-x (6)



Norm is a function || || : S — Ry U {0} with the following properties:

0]l =0 (7)
VaeR,xeS |la-x|[=|af-[[]] (8)
v,y Ik +yll < X[+l (9)

Metric is a function ¢ : S x S — Ry U{0}. In the Banach space the metric is defined
with the use of the norm

o(x,y) =[x —vyll (10)

Banach space is complete, i.e. each convergent Cauchy series of points from S con-
verges to a point from S.

The space is measurable if there exists a measure function m : B(S) — R4 U {0},
where B(S) is a family of subsets of S, and

m(@) =0 (11)
VA,B € B(S) m(AUB)<m(A)+m(B) (12)
m(AN B) <m(A) and m(AN B) < m(B) (13)

Let us additionally define a diagonal of a set as a function d : B(S) — R4+ U {0} such
that

VA€ B(S) d(A)= sup |[x—yl| (14)

x,yeEA

2.2 Asymptotic correctness

Consider a measurable Banach space S, an objective function f : S — R and a set of
feasible solutions (feasible set) D C S. By x* denote the point where f takes its global
maximum f* in D. An algorithm is asymptotically correct in D [5] if it generates the
sequence of points x* with the following property

VA C D,m(A) >0 Jim Prob {3t<T|x' e A} =1. (15)
Consider the sequence {y'} defined as follows

y'=x' (16)

Ve yt:{xf if f(x) > f(y'™)

yt~1  otherwise

Assume that x* is not an isolated point, i.e.
Ve >0 m(Ly(f*—e)) >0, (18)
where Ly is the level set defined as follows

Li(M)={xeD,f(x)> M} (19)



The sequence {f(y")} will then converge to f* with probability 1:

Ve >0 tlim Prob{y' € Ly(f*—¢)} = 1. (20)

3 Asymptotic correctness of evolutionary algorithm

3.1 The algorithm

Consider a measurable Banach space S and the feasible set D C S, m(D) < oco. Chro-
mosomes are vectors from S, and the fitness function f : S — R should be maximized in
D. The evolutionary algorithm maintains the base population P! of chromosomes (¢ is
the generation index). An initial base population P? is created arbitrarily, although it is
necessary that at least a single chromosome is contained by D.

The base population P? is used to build a new offspring population Of. This is
attained in two phases: reproduction (with or without crossover) and mutation of the
reproduced individuals. After that, base population P‘*! for the new generation is
selected from the populations P* and O!. Perhaps the most popular choice is to set
Pt = O

It is assumed that there exists a method for generating a point from D. This method
is used to fill in the whole population P? in the EA initialization phase. It is also assumed
that if P! contains no feasible individuals, then at least one element from P? is replaced
by a point generated from D with the same procedure as used for the initialization.

3.2 Probabilistic model of EA

Operation of the EA can be described in probabilistic terms. The general idea is to
treat the reproduction (with or without crossover) and mutation process as a random
variable and to determine its distribution, called the sampling distribution (SD). The
offspring population O! contains chromosomes drawn independently from that random
variable.

Reproduction. Let us number the individuals in P? with integers 1,...,u. The i-th
element x; of the base population P! can be selected to reproduce with the probability
P, (i|P?). The probability for selection is defined in the conditional way, since the contents
of the whole base population influences its value. Note that some chromosomes from P?
may be identical, so is we want to describe the reproduction process in the search space
S, we have to take this fact into account. Thus, the distribution of reproduction in the
search space P.(x|P?!) satisfies the following condition

VACS Prob(xeA)= > PP (21)
xiGPt,x,;EA

where x is the vector resulting from the reproduction.

Reproduced chromosomes undergo mutation either immediately, or after crossing
them over. By p. denote the probability that an individual from O! is yielded by the
reproduction+crossover+mutation cycle; obviously 1 —p, is the probability of mutating a
chromosome immediately after the reproduction. Then the distribution of chromosomes



that undergo further reproduction is
P/(x|P") = pePre(x|P") + (1 = pe) P (x[P") (22)

where P,. is the reproduction-with-crossover distribution.

Reproduction with crossover. Consider the P,.(x|P?) distribution. Assume that
two parental chromosomes x and y undergo crossing over and yield a single chromo-
some c. If the role of crossover is to generate chromosomes sharing the parents’ genetic
material, then in a Banach space it is natural to assume that

lle =x|[ +[le =yl = x = yll. (23)

Note that above property holds for the “canonical” crossover schemes, e.g. arithmetical
crossover in R™ or 1-point, k-point and uniform crossover in {0, 1}".

We can use (22) and (23) to give a lower bound for the probability of reproduction
with crossover. Observe that, since individuals are reproduced independently one from
another, it is possible to select and reproduce twice the same individual which in turn
results in ¢ = x. If so, and if the crossed over parents are picked up on random according
to the reproduction distribution P,(x|P?), then

Pre(x[P') > [P (x[P")]” (24)
So, putting (24) into (22) we get the following bound
P/(x|P*) > pe[P(x[P")]* + (1 — pe) P (x|PY) (25)

Note that P,..(x|P?) > 0 provided that P.(x|P?) > 0. Note also that there exist some
points for which P,.(x|P?) > 0 although P,(x|P') = 0. Surprisingly, for some points it
may happen that P/ (x|P?) > P.(x|P?).

Mutation. The mutation operation is defined independently from the base population
contents. Mutation yields a new chromosome y by adding a random correction vector
m to the chromosome x which undergoes mutation. Thus, if mutation is performed
on the result of the reproduction r (with or without crossover), and r,m are generated
independently, the resulting chromosome

y=r+m (26)

is a random variable with the distribution Ps(x|P?) given by

Py(x|P) = P/(x[P") P (x), (27)

where "*” is the symbol of convolution. Note that the resulting distribution Ps(x|P?) is
the sampling distribution.

3.3 Two theorems on EA asymptotic correctness

Let us now consider two theorems about the asymptotic correctness of an EA in
a measurable Banach space. In the first theorem (after [8], generalized version of the
theorem 4.2.2.3 1), mutation is assumed to have positive distribution over the whole
feasible set.



Theorem 1 Consider a measurable Banach space S and the feasible set D C S,
d(D) < co. Assume that EA uses mutation (26) whose distribution satisfies the condition

Ir>d(D),e >0 VAC K(r) Prob{m € A} > em(A) (28)

where K(r) = {x € S, ||x|| < r}. The evolutionary algorithm is asymptotically correct in
D, regardless of the selection, crossover and the contents of the population PY.

The idea of proving is to observe the base population contains in each generation at
least one feasible individual x* € D for which P.(x!|P*) > 1/u. Since for each C C D
and for each y € C we get ||x! —y|| < d(D), then due to the definition of mutation (26)
we get it holds

>0 VCCD,xeD Prob{(x+m) € C} > em(C) (29)
and finally, taking into account the probability for reproducing x, we conclude that
Je>0 VOCD,tP" 3IxecP Prob{(x+m) € C} >em(C)/u (30)

which proves the asymptotic correctness of the EA.

Note that Theorem 1 points to macromutations as to the essential mechanism allowing
for the global properties of the EA, regardless of the selection type. This is somehow
inconsistent with the evolution theory which explains the amazing adaptation properties
as an effect of the cumulation of small mutations over generations rather than single
macromutations (e.g. the discussion about the appearance of eyes)[3].

In addition there is a problem with Theorem 1 from the numerical point of view. In
the R™ space, which is a well known Banach space, it is customary to use the zero mean
Gaussian distribution to implement the mutation. Available random number generators
only approximate the Gaussian distribution and it is practically impossible to generate
a random value exceeding the range [—50, 50]. Thus one may come up to the situation
when the assumptions of the theorem 1 are satisfied by the evolutionary algorithm and
do not hold for its computer implementation. In order to overcome the above problems
it is necessary to formulate the theorem which is less demanding when considering the
mutation distribution.

Theorem 2 Consider measurable Banach space S and the feasible set D C S,
d(D) < co. Assume that EA is defined in the following way:
o mutation operator is defined according to (26) and the condition is satisfied

Ir>0,e>0 VACK(r) Prob{m € A} > em(A) (31)

where K(r) = {x € S, ||x|| <},
o reproduction distribution (22) is positive defined

Je>0 Vvt Vie{l,.,u},x;,€D  P.(i|P") >¢ (32)

o if crossover is used then it satisfies the property (23)
o offspring population becomes the base population for the next generation P'+1 = OF.



The evolutionary algorithm is asymptotically correct in D, regardless of the contents of
the population P°.

Note that Theorem 2 points to the cumulation of small changes (possibly leading
temporarily to the fitness decrease) as to the mechanism crucial for the global properties
of the EA.

The proof is based on the observation that the population P! contains individuals
resulting from k mutations of an individual from P*~*. Thus

k
Vi>k JyeP xeP'F y=x+) m; (33)
i=1

where m; are k vectors driven independently from the random variable with the distri-
bution P,,, and k = [d(D)/r] + 1 where r characterizes the distribution P,, in (31). It
can be proved [1] that if a distribution P(x) satisfies the property

Ir>0,e1 >0 VACK(r) Prob{x € A} > em(A) (34)

where K (r) = {x € S,||x|| < r}, then for the distribution

P(x) = Pp -+ x Pp(x) (35)
k
we get
Jeg >0 VAC K ((k—1)r) Prob{x € A} > em(A4) (36)

Note that the position of y from (33) is a random variable with the distribution
dependent on x
P(y|x) = Py x+- % Py (y — x) (37)
k
If (31) holds and d(D) < oo then k < oo and, taking into account (34)—(36), we get

Je>0 VACK((D)),xeD Prob{(y —x) € A} > em(A) (38)

where y is given by (33). For each x € P*~* the probability that there exists y € P?,
such that (33) holds, is no less that a certain number € > 0, due to (32) and (25). The
latter observation, together with (38), proves the Theorem 2.

4 Practical issues

The above theorems give important time-asymptotic information about the dynamics
of an EA. Tt would be interesting to compare what are the lower bound values for the
probability of generating a point within a certain area of the feasible set D.

Consider an EA in R! and a feasible set D such that d(D) < oco. Assume first that
the mutation is performed according to a distribution uniform in the range [—1, 1]. This
distribution does not satisfy the condition of the Theorem 1, though the asymptotic
correctness can be proved using the Theorem 2.

Now assume that Gaussian mutation and tournament selection are used (tournament
size equals 2). Assume also that infeasible individuals do not reproduce. According to



the assumptions of the Theorem 1, the sampling distribution can, in each generation, be
bounded by
e1 = Noo(d(D)) (39)

where Ny o(x) is the pdf of the normal distribution of mean 0 and standard deviation
o. After t generations, the probability that EA will generate at least one point in a set
A C D is no less than

pi(t) =1—[1 —eym(A)]" (40)

If one follows the assumptions of the Theorem 2, and if the base population contains at
least one feasible individual through all generations, the pdf of the sampling distribution
after ¢ generations can be bounded by

ex(t) = w*' Ny , i (d(D) (41)

since the variance of ¢t autoconvolutions is ¢ times greater than the convolved distribution,
and each feasible individual reproduces with the probability no less than x~2. On the
other hand, if we start computations in generation k < ¢, we will get that in the same
time a bound

ea(t) = n PNy i (d(D)) (42)

Finally, the pdf of the sampling distribution is bounded by

e2(t) = _max  p YN g (d(D) (43)
So, after ¢t generations, the probability that EA will generate at least one point in a set
A C D is bounded by

t

pa(t) = 1= [][1 = c2(t)ym(A)] (44)

k=1

where €2(1) is given by (43).

Let us investigate the bounds p; and ps computed according to both Theorems.

Assume d(D) =8, 0 =1, u =5, m(A) = 1. Plots of p; and py versus the number of
generations are provided in Fig.1. Extremely low values of both parameters can easily
be observed. It can also be seen that after a few generation we have pa(t) = pi(t).

One can expect that the population size p should strongly influence the proportion
p2(t)/p1(t). This effect is illustrated in Fig.1. Plots have been generated assuming
d(D) = 8,0 =1 and m(A) = 1. It can be seen that for a small population size, the
bound py is significantly greater than p;. This changes when p > 10. We can judge that
the asymptotic correctness of EA with small populations can be explained mainly due
to the accumulation of mutations, and with the large ones — due to macromutations.

Influence of the o value on the ps(t)/p1(t) seems obvious — the larger o, the better
bounds we get for macromutations and the less important is the accumulation of the
mutations over successive generations. This effect is illustrated in Fig.2 assuming d(D) =
8, 1 =5 and m(A) = 1. It was impossible to generate plots for ¢ < 0.9 due to extremely
small pi(¢) values. It seems that if o is small in comparison with d(D) (in our case
o < 14, ie. d(D) > 5.70), macromutations are definitely not the mechanism that
explains the asymptotic correctness.
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Figure 1. a) Values of p1(¢t) and p2(t) vs. t, b) Influence of the population size u on the fraction

p1(t)/p2(t).
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Figure 2. Influence on the fraction p1(¢)/p2(t) of the a) mutation range o and b) search space
dimensionality n.

According to the intuition we could expect that the role of macromutations will de-
crease with the dimensionality of the search space. To verify this let us compute po(t)
and p1(t) assuming that the evolution is performed in R™, the feasible set is a hypercube
with the edge of the length 2, so d(D) = 2v/n, and m(A) = 1 (so A is a unit hypercube),
and a population of size p = 5 is processed. Again it appears that with n increasing, the
lower bounds obtained for macromutations vanishes faster than for the accumulation of
small mutations (see Fig.2).

5 Summary and conclusions

The paper is devoted to certain aspects of the relationship between the abstract evolution-
ary algorithm and its computer implementation. Theorems for proving the asymptotic
correctness of EA usually take an assumption that the mutation distribution is positive
everywhere (macromutation based theorems). In this paper a new version of the asymp-
totic correctness theorem is presented with a weaker assumption about the mutation



distribution: it is assumed that there exists a ball of a certain radius in which the muta-
tion distribution is positive (accumulation based theorem). It is however necessary that
the selection is nonelitist and each individual, even the worst, may generate its offspring.

The accumulation based theorem and the macromutation based one use certain lower
bounds for the probability of putting a point in an arbitrary subset of the feasible set. A
simple illustrative example is used to investigate the relationship of the lower bound val-
ues for both theorems. It seems that the relationship depends on the conditions of an EA:
if the mutation distribution is concentrated on a small-diagonal set, the population size is
small, or the number of dimensions is high, the accumulation based theorem gives better
values of the lower bound. Otherwise, the estimations due to the macromutation based
theorem are better. One may conclude, that these observations imply the conditions,
under which it is more advisable to rely either on large populations and macromutations,
or on the accumulation of small mutations by a flexible small population.
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