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Abstract. We present the idea of an application of the mixtures of Erlang
distributions in the construction of the recombination mechanism in estimation
of distribution algorithms. We analyze main properties of Erlang mixtures and
define a new Erlang Mixture Estimation of Distribution Algorithm. We try to
compare the efficiencies of ErM-EDA and evolutionary strategy in case of large
populations. Some experimental results are presented after simple theoretical
studies.

1 Introduction

The modeling of the population distribution in evolutionary algorithms can be a key
to analyzing the populations dynamics. The mathematical analysis of the population
distributions is not easy because of an unknown analytical form of the empirical density
functions.

The empirical distributions of the evolving populations could be estimated by mix-
tures of continuous distributions. The most convenient estimator is the mixture of Gaus-
sian distributions. The parameters of this mixture can be calibrated by a quasi-Bayesian
estimation technique [3] which is rather hard to implement and is time consuming. We
proposed in [7] to replace the mixture of Gaussian distributions estimator by the mixture
of Erlang distributions estimator.

Good approximation properties of the finite mixture of Erlang distributions are ex-
amined and theoretically proved in many papers [5]. It has been successfully used in
engineering and business. The applications include queuing systems, reliability assess-
ment, inventory control, computer evaluations and biological studies [13], [2]. The gamma
and Erlang distributions are most frequently used to model the lifetime data. This is
due to their flexibility in the choice of the shape and scale parameters [5].

In this paper we try to verify the efficiency of the Erlang mixture estimator in case of
multiple dimension problems. We define an Erlang Mixture Estimation of Distribution
Algorithm (ErM-EDA) as a new Estimated of Distribution Algorithm (EDA) [6]. The
main goal of EDAs is to extract some global statistical information from a set of se-
lected sample points (population) and build a posterior probability distribution model of
promising solutions based on the extracted information. The new solutions are sampled
from the model and they replace the current population.



We performed some simple experiments to compare efficiency of our method with the
efficiency of the evolutionary algorithm in case of large finite populations.

The remainder of the paper is organized as follows. In section 2 we define a probabil-
ity model for our algorithm and we introduce an Erlang Mixture Population Generator
specially designed for this model. In section 3 we define the ErM-EDA algorithm. Re-
sults of performed numerical experiments are presented in Section 4. The paper ends
with some final remarks.

2 Mixtures of Erlang distributions

The gamma distribution and its special case the Erlang distribution play a crucial role
in mathematical statistic and many applied areas.

Definition 2.1. A random variable X is said to have a gamma distribution with pa-
rameters (b, λ), if X has the probability density function (pdf)

γ
(λ)
(b) (x) =

{
0 , if x ≤ 0
λbxb−1

Γ(b)eλx , otherwise (1)

where λ > 0, b > 0 are the scale and shape parameters respectively and Γ is the Euler’s
gamma function.

The Erlang distribution is a special case of the gamma distribution, thus we can define
it in the following way:

Definition 2.2. When the gamma distribution has an integral shape parameter m, it is
called the Erlang distribution with the probability density function:

f
(λ)
(m)(x) =

{
0 , if x ≤ 0
λmxm−1

(m−1)! e−λx , otherwise (2)

where m ∈ {1, 2, 3, 4, ...} and λ is a scale parameter.

We denote the random variable with the Erlang distribution by X ∼ Er(m,λ).
The following are interesting and important properties of the Erlang distribution,

X ∼ Er(m,λ):
1. The mean and variance of x are

E(X) =
m

λ
; V (X) =

m

λ2
.

2. The Laplace transform of X is

E(exp(sX)) = (1− s/λ)−m.

3. X can be defined as a sum of m identically distributed exponential random variables
with rate λ.

4. The Erlang distribution has reproductive and infinitely divisible property.



These properties provide very useful theoretical tools when using gamma and Erlang
distributions in real applications. For a given mean value of the Erlang random variable
varying the value of the shape parameter m is equivalent to varying the variance.

To solve a multimodal optimization problem we can apply a probabilistic model based
on the mixtures of the continuous distributions. A finite mixture of univariate Erlang
distributions can be defined in the following way:

Definition 2.3. Let X be an a random variable with the distribution which is a mixture
of the univariate Erlang distributions. The probability density function of this mixture
can be defined by the following formula:

g(x) =

{
0 , x ≤ 0
∑k

i=1 vi
λ

mi+1
i ·xmi

i

mi!
· e(−λi·xi) , x > 0

; (3)

where:
k - is the number of parcels, λi > 0, (i = 1, ..., k) - are the scale parameters of

the mixture, mi > 0, (i = 1, ..., k) - are the shape parameters of the mixture, vi > 0,
(i = 1, ..., k) - are mixture weights, such that:

∑k
i=1 vi = 1.

The concept of mixture can be extended to multiple dimensions by means of the
weighted sum of multivariate distributions.

Definition 2.4. The finite mixture of multivariate Erlangs is the probability distribution
whose density function is given by the following formula:

G(x1, ..., xn) =
k∑

i=1

vi · f bλicmi
(x1, ..., xn) (4)

where f
bλicmi

(x1, ..., xn) is the joint Erlang density function, m̂i = (mi
1, ..., m

i
n) and

λ̂i = (λi
1, ..., λ

i
n), (i = 1, ..., k) are shape and scale parameters for this function.

A particular case of multivariate mixture is the tensor product [10], which is a multi-
variate distribution built from the weighted sum of the product of n univariate distribu-
tions, where n is the number of random variables. The tensor product is nothing other
than the mixture of multivariate distributions with independent coordinates. If n = 1,
then the tensor product reduces to a mixture.

3 Erlang Mixture Population Generator

The Erlang mixture distribution can be very useful in the estimation of the empirical
distributions of samples.

Let us define a set {x1, ...xN} of sample points, xl = (xl
1, ..., x

l
n), xl

j ∈ [aj , bj ];
aj , bj ∈ R; aj < bj , l = 1, ..., N . To construct a multidimensional frequency histogram
for the set of samples we have to divide the admissible domain [a1, b1]× ...× [an, bn] into
k = K× ...×K(n times) classes. The class frequencies in the multidimensional histogram
W (i) are calculated in the following way W (i) = W (1, i) · ... ·W (n, i) and the class marks
for this histogram are the points ci = (ci(1), ..., ci(n)), where W (j, t) and ct(j) are the



class frequencies and the class marks for the coordinates respectively. Analyzing this
histogram we can generate the new set of sample points with the mixture of Erlangs
distribution. Assuming that the variances in each frequency histogram class are equal
we can define an Erlang Mixture Population Generator in the following way:

1. For given ci = (ci(1), ..., ci(n)) and fixed shape parameters m̂i = (mi
1, ..., m

i
n) we

calculate the scale parameters λ̂i = (λi
1, ..., λ

i
n) of the mixture according to the

following formula

λi
j =

mi
j

ci(j)
; dj =

m1
j

λ1
j

= ... =
mk

j

λk
j

, j = 1, ..., n; (i = 1, ..., k). (5)

where dj is the variance of the variable Xj . The variance dj should not be greater
than (bj−aj)

2

4K2 .

2. We calculate the weight coefficients of the mixture vi; (i = 1, ..k) in the following
way:

vi =
W (i)∑k
i=1 W (i)

; (6)

where W (i) is the multidimensional class frequency

3. We define the probability density function of the mixture G(x) according to the
formula(4).

4. We generate the random variable X with the mixture of Erlang probability distri-
butions.

In the step 4. of the generator we have to use a random number generator for the
mixtures. In case of mixtures of univariate distributions we can use the inverse transform
method [16]. This method is very accurate but time-consuming. In case of mixtures of
multivariate distributions we propose a simple mixture generator defined below:

Step1: Generate an index I ∈ {1, .., k} according to the distribution
Prob(I = i) = vi

Step2: For given I = i generate a random variable X with the Erlang distribution
with parameters λ̂i and m̂i.

Step3: Repeat steps 1 and 2 until the new set of samples is full.
The generation of the multidimensional random variable X in the Step2 can be very

complicated. A few general techniques for simulating non-normal multivariate distribu-
tions can be applied for this problem, for example the transformation approach and the
rejection approach or the conditional distribution method [1].

In the simplest case of independent coordinates of X we can generate each univariate
coordinate using one of the efficient gamma generators [12]. The joint Erlang density
function is calculated as a product of the univariate ones. In this paper we assume that
the multivariate Erlang mixture is a tensor product.

We applied the Erlang Mixture Population Generator as the recombination mecha-
nism in evolutionary strategies. We defined a new estimation of distribution algorithm
called Erlang Mixture EDA (ErM-EDA). A framework for this algorithm is presented
the next section.



4 Erlang Mixture Estimation of Distribution Algorithm

4.1 Main idea of EDAs

Estimation of Distribution Algorithms (EDAs) [6] are the stochastical methods de-
signed for solving global optimization problems. The main goal of EDAs is to extract
some global statistic information from a set of selected sample points (population) and
build a posterior probability distribution model of promising solutions based on the ex-
tracted information. The new solutions are sampled from the model and they replace
the current population.

Probability models of the sample sets in the existing estimation of distribution algo-
rithms are based on a Gaussian distributions model [13], a Gaussian mixtures model [9]
or a histogram model [15]. Each of these methods has many disadvantages. A Gaussian
model can be built with very low computational cost but cannot be used to cope with
multimodal objective function. A Gaussian mixture model is the most useful method,
but the cost of building such a model is prohibitively high, particularly for large scale
problems. The marginal histogram model is the simplest to implement but the indepen-
dence of the variables must be assumed. We should also remember that usually a lot
of sample points are needed to build a good probability model. Thus EDAs are often
time-consuming.

One way to improve the performance of these algorithms is to hybridize a local method
with EDA. We can refer to two recent propositions of hybrid EDAs: Iterated Estimation
Evolutionary Algorithm (IEDA) with conjugate gradient algorithm developed by Bosman
and Thierens [8] and Estimation of Distribution Algorithm with Local Search (EDA/L)
defined by Zhang et al [11].

The other way to improve the performance of EDAs could be an application of another
probability model. We defined a new density estimation algorithm using Erlang mixture
generator as a method of reproduction in EDA. We tried to give an answer for the
question about possibility.

4.2 ErM-EDA framework

The main idea of ErM-EDA is the replacement of the reproduction mechanism in the
evolutionary strategies with the reproduction based on the generator of the mixture of
Erlang distributions. Parameters of the empirical density function for this generator are
determined from the frequency histogram of the parental population obtained as a result
of the applied selection method.

Let us define some global optimization problem

x̂ = arg min
x∈D

f(x), (7)

where x = (x1, ...xn) ∈ Rn, f : Rn → R is the objective function and
D = {x : ai ≤ x ≤ bi; i = 1, ..., n} is the feasible region. To apply the ErM-EDA to
solve this problem we have first to make a linear transformation the objective function
because of the assumption of nonnegative arguments for the Erlang Mixture Population
Generator.

The framework of the proposed algorithm is as follows:
1. Parameters setting: Population sizes - N , Ñ ; the number of classes in a fre-

quency histogram k



2. Initialization: Generate N points from D using uniform design technique.
3. Selection of the gene pool: Select Ñ to the parental population (gene pool)

using fitness proportional selection mechanism.
4. Reproduction: Built a frequency histogram of the gene pool and calculate the

parameters of the Erlang multivariate mixture empirical density function. Use the
Erlang mixture generator to generate Ñ offsprings to the offspring population.

5. Population updating: Select N individuals from the offspring population to
constitute a new base population.

6. Stopping criterion: Repeat steps 3. - 5. until the stopping criterion is satisfied.
In Reproduction step we first built a frequency histogram of the gene pool created in

step 3. by using the roulette wheel selection technique [4]. The frequency classes defined
for this histogram are the same in each iteration of ErM-EDA. Thus the scale and the
shape parameters could be also fixed. Only the weights coefficients of the mixture should
be calculated in each iteration.

In step 5. we select individuals to the new base population according to the same
selection scheme as in step 3.. As a stopping criterion we accept the maximal number of
iterations.

The accuracy of the ErM-EDA algorithm depends on the number of classes k in the
frequency histogram.

5 Experiments

In this section we report on the main results of simple experiments which we have per-
formed for ErM-EDA. The following test functions are used in our experimental studies:

• T1 =
∑2

i=1−(xi − 5.12)2 − 10cos(2Π(xi − 5.12) + 10); xi ∈ [0; 10, 24]
• T2 =

∑10
i=1−(xi − 5.12)2 − 10cos(2Π(xi − 5.12) + 10); xi ∈ [0; 10, 24]

• T3 = exp (−5
∑2

i=1 (xi − 0, 5)2) + 1
2 exp (−5((1, 5− x1)2 +

∑2
i=1 (xi − 0, 5)2));

xi ∈ [0, 1]
• T4 = exp (−5

∑10
i=1 (xi − 0, 5)2) + 1

2 exp (−5((1, 5− x1)2 +
∑10

i=1 (xi − 0, 5)2));
xi ∈ [0, 1]

The modified Rastrigin functions T1 and T2 were minimized while T3 and T4 functions
(the sums of two Gaussian peaks) where maximized.

For the ErM-EDA algorithm we set the following parameters:

• The size of the populations

N =
{

31 , n = 2
1000 , n = 10 ; (8)

where n means the dimension of the search space.
• The variances of the univariate Erlang distributions are d(1) = 1, 050 for T1 and

T2, d(2) = 0, 0004 for T3 and T4.
• The number of multidimensional frequency classes was k = 5n.
• Stopping condition: The maximal number of executed iterations was 15.

We used the roulette wheel selection mechanism and gamma random number gener-
ator. We performed 30 independent runs for ErM-EDA and we compared its efficiency



Table 1. The ErM-EDA and EA performance

Test nr nr
function (ErM-EDA) (EA)

T1 30 22
T2 4 14
T3 30 26
T4 5 19

with the efficiency of (µ, λ)-Evolutionary Strategy (ES) with Gaussian mutation on he
same set of the test functions. We set λ = 7µ and the standard deviation of mutation
σ = 1.0 for ES. The values of µ were the same as for the ErM-EDA populations. The
experimental results are presented in Table 1. The parameter nr denotes the number of
runs in which the global optimum was found.

The obtained results show that for two-dimensional functions T1 and T3 the perfor-
mances of both applied algorithms are very similar. In cases of the large populations and
ten-dimensional functions the performance of ErM-EDA was four times worse than ES.

6 Conclusions

• The modeling of the population distribution in the evolutionary algorithms can be
a key to analyzing the populations dynamics.

• We applied the Erlang mixture model for the estimation of the empirical distribu-
tions of individuals selected for a recombination in an evolutionary process. We
defined a new estimation of distribution algorithm called Erlang Mixture Esti-
mation of Distribution Algorithm. We introduce the Erlang Mixture Population
Generator as a reproduction mechanism in this algorithm.

• Simple experimental results show that our algorithm could be effective only in
the low-dimensional cases.The performance of ErM-EDA was very disappointed
for us. We think that the main reason of this bad performance is the problem
with the generation of the uniformly distributed sample points in high dimensional
spaces. Also the analysis of the frequency histograms is not an optimal method
of calibration of the parameters of the cumulative probability distribution of the
populations.

• In our current research we also try to apply another estimators, such as kernel
estimators [14]. We also extended the estimator proposed [7] to the multidimen-
sional case. We obtained a new model in which populations are represented by
the matrixes. The columns of the matrix are vectors of the individuals coordinates
and the distributions of the variables in rows are the mixtures of the univariate
Erlang distributions. The results of the simple experiments are much better than
for ErM-EDA and ES algorithms, but we need to perform more experiments to
verify the efficiency of this method.
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