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Abstract. In this paper we present an algorithmic solution to PID controller
parameters tuning task. Firstly, the brief test model and a simple example on how
to tune PID parameters using genetic algorithm are presented. This functionality
is then tested in more complicated situation of a non-stationary linear object.
Adaptivity of such a solution is considered along with some results.

1 Introduction

The possibilities of advanced control are of very strong practical importance. The auto-
mated update of the controller parameters is the crucial issue. The design and definition
of the controller structure requires high level knowledge and experience, while with the
structure set up the parameters can be tuned adaptively. The paper presents the re-
sults of the application of the genetic algorithm based approach to on-line parameter
adaptation. The main objective was to satisfy real time requirements enabling controller
real-time operation in the non-stationary conditions.

The presented approach is different from simple PID tuning using genetic algorithm.
Firstly, evolutionary optimization algorithm works in time. Its epochs changes together
with the sampling period of the controller. It runs as long as the controller operates.
Thus it forms an on-line adaptation mechanism for the controller. It is a non-stationary
system.

The paper is organized in two parts. First the idea of the application of the evo-
lutionary optimization to the one-shot tuning of the controller is introduced. This is a
well known task but it is then followed by on-line extension while the optimization runs
in real-time. The concept is presented with an example of the PID controller. But the
application to other regulators is straightforward and does not require additional specific
modifications.

2 Parameter estimation

The main goal is to design the estimation algorithm, which would automatically tune the
controller without user intervention. The extension of the algorithm between different
control strategies should also be easy. It appeared that the modified evolutionary strategy



can help to solve that problem. The optimized strategies for succession and mutation
satisfy the the need for on-line adaptation scheme.

2.1 Controller

The simplest control strategy was chosen for the verification of the proposed approach.
It has only three parameters: the gain K, integration time - Ti and derivation time -
Td. Tests with PID controller give the opportunity for many comparative tests and
additionally enable easier practical verification due to the large application base. As for
process, linear models were used with step changes of their parameters.

2.2 Evolutionary algorithm

The evolutionary algorithm is used as the optimization and adaptation mechanism.
Most of the parameters are standard except for succession and mutation which were
designed to satisfy specific requirements of the used structure. The characteristics of the
algorithm is described in detail below.

Individual coding The proper choice of the coding of the solution domain within the
chromosome is the most important factor in the algorithm design. Thus the genes of
the chromosome reflects the values of the parameters being optimized. In the considered
example it is quite natural to have three genes in chromosomes, each one being responsible
for one controller parameter. Thus each individual is in the form of the three element
vector

X = [K Td Ti]T (1)

The chromosome variables are being modified to maximize the selected cost function.
All the variables are constrained as below

Kmin ≤ K ≤ Kmax

Tmin
d ≤ Td ≤ Tmax

d

Tmin
i ≤ Ti ≤ Tmax

i

(2)

where Tmin
i > 0. These constraints are the only algorithm parameters that need to be

defined by the user. Only rough estimate of the information about the process is thus
required.

Cost function Taking into consideration that the process is described by some transfer
function the performance index is defined as an error between simulated output of the
controller-process control loop. For sake of the realism the additional factor limiting the
variations of the control signal is applied. For the SISO systems we have the following
criterion:

F (X) = −
(∫ th

0

(yz(t)− y(t, X))2dt +0.1
∫ th

0

u2(t, X)dt

)
where yz(t) is the desired process output (setpoint), y(t, X) is the real process output
and u(t, X) is the control signal. The overall functional depends on the chromosome
defined in (1). The process is simulated over some horizon th (in our case 20 sec.) with
the setpoint defined by the sinusoidal function



yz(t) = sin(t) (3)

Due to the evolutionary algorithms convention the optimization task is to maximize,
and thus there is a negative sign in the performance index. The evolutionary algorithm
brings one additional advantage. We can consider non convex cost functions with non-
linear constraints. It offers more flexibility in the algorithm design phase.

Genetic operators The decision about the genetic operators is needed to allow proper
and fast searching capabilities of the optimization algorithm.

As the crossover, simple averaging algorithm is used. The two individual crossover is
applied. The genotype of the resulting individual is defined as

X = ξX1 + (1− ξ)X2 (4)

where ξ is the stochastic variable with the flat distribution over the [0, 1] domain. The
resulting individual is always inside the feasible region because this region is convex. The
crossover is performed with the probability pc (in our case set to 0.7).

The mutation is the second genetic operator. It plays a very important role in the
presented algorithm. It is responsible for the adaptation mechanism. If the mutation is
too ’small’ it might cause the grouping of the solutions close to one of the maximum,
disabling further searching. Simultaneously it can slow down the full process, which is
forbidden - the algorithm has to operate in real time. Its value must somehow reflects
the adaptation speed.

The mutation strategy is quite simple. The new chromosome is formed as the sum
of the actual chromosome and a random value with normal distribution, exponentially
decaying with the epoch number, as in the formula below K

Td

Ti

 =

 K
Td

Ti

 +

 σK
mζ1

σTd
m ζ2

σTi
m ζ3

 · 0.99epoch (5)

Each of the genes has different standard deviation σm, while ζi denotes standard sto-
chastic variables with variance 1 and expected value 0. It should be noted that standard
deviations play the most important role being responsible for the adaptation. If mutation
moves the individual outside of the feasible region, it is moved to the nearest point lying
on the border of the feasible region.

Succession and reproduction Succession and reproduction plays also important role
in the behavior of the algorithm. They have impact on the speed of the variance decrease
of the selected genes in population, due to larger or smaller selectivity.

As the main succession strategy the full method has been chosen. All new indi-
viduals appeared after crossover and reproduction are accepted to the new population.
Tournament reproduction is used, so to the new population comes an individual with the
highest performance out of q individuals chosen with uniform probability. The parameter
q enables selection sensitivity to be controlled.



2.3 Results

The algorithm described above was used to check if the real-time adaptation of the
PID controller could be achieved. Two exemplary processes were tested. The first one is
relatively slow but stable, while the second one is faster and unstable.

G1(s) =
1.68

9.78s2 + 7.17s + 1
(6)

G2(s) =
s2 + 8s + 7

s3 + 11s2 − 62s− 720
(7)

Several simulations were performed to find the best parameter setup for the desired
goal of PID controller on-line tuning.

For the first process the tournament size was set to q = 2. The cubic constraints are
as below:  Kmin Kmax

Tmin
d Tmax

d

Tmin
i Tmax

i

 =

 0 30
0 30

0.1 300


The standard deviation σ vector was set according to the variation of each of the genes
in such a way that, with probability 0.99, the mutation should be smaller then 0.1 of the
parameter variation range.

σm =

 σK
m

σTd
m

σTi
m

 =
1
30

 Kmax −Kmin

Tmax
d − Tmin

d

Tmax
i − Tmin

i

 (8)

Typical run of the algorithm is presented on figure 1. Figure 1(a) presents a diagram
of the performance index of the most feasible individual in the population. The graph
is typical, with the most rapid changes on the beginning of the optimization process.
The frequency and stepsize of changes decrease with time. Figure 1(b) presents relative
variance (variance divide by the square of the range) of the selected genes in all individuals
in all epochs. One can notice that the selection sensitivity is quite strong, with decreasing
variance staying on the relatively small values during the simulation period.

It is quite interesting to observe the changes in the values of the controller parameters
in population. The graphs on figure 1(b) present the PID parameters. It can be seen that
with time, the populations are more dense. The solid line presents the best individual.

As the result of the optimization the best parameters (the best individual) were found
and are presented below.

X̂ =

 1.36
11.82
203

 , F (X̂) = −4.24

The reference simulations are sketched on figure 2.
Similar experiments were performed for the second testing process. It appeared that

due to the better ’controllability’ of the process the part of the cost function responsible
for the the control signal variation is practically switched off. The results prove that
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Figure 1. Typical run of the algorithm (first object)

feature. New parameters ranges were chosen as: Kmin Kmax

Tmin
d Tmax

d

Tmin
i Tmax

i

 =

 0 300
0 300

0.1 3000


Mutation variance remains unchanged (still being some predefined range percentage).
It is worth noticing that performance index in the instability situations reached very
high values working as the soft constraint. Similarly to the previous example the algo-
rithm operation is sketched on figure 3(a). The characteristic rapid increase of the cost
function in the beginning of the optimization process can also be observed as for the
selection mechanism effect. Lower number of step changes can be caused by the harder
optimization task. The controller parameter changes are presented on figure 3(b).

It can be clearly seen that the controller gain is very close to its upper constraint.
Thus the control signal constraint in the performance index is not so important. The
same effect is clearly seen on the diagram presenting comparison of simulated process
versus setpoint (figure 4). Both signals matches each other. The best found individual
is as follows:

X̂ =

 300
62.78
1870

 , F (X̂) = −4.24
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Figure 2. Controlled object simulation

The above experiments shows that evolutionary algorithm can be used for the tuning of
the PID controller. The literature shows the same.

Now the problem of the controller on-line adaptation will be investigated. The evo-
lutionary algorithm working as the tuner will be changed to match real-time operation
and the adaptation task.

3 Adaptation algorithm

The analysis of dynamic evolutionary algorithm used for the controller tuning is investi-
gated using the same examples as above: PID controller with an exemplary process. To
check the adaptation, the process will be switching between two transfer functions:

G3(s) =
8.4

9.78s2 + 7.16s + 1
(9)

and
G̃3(s) =

2.1
9.78s2 + 7.16s + 1

(10)

The main parameter being changed is the process gain. This effect is often observed
in practice. The dynamic evolutionary algorithm operates together with the controller.
The optimization is being performed in real time. Each sampling period is equal to one
epoch of the evolutionary algorithm.

3.1 Modified evolutionary algorithm

The optimization algorithm has to be modified to meet new ’dynamic’ objectives.
First, mutation operator was modified. The exponentially decaying dependent on the
epoch number is switched off.

Additionally succession operator was modified. To increase algorithm exploration
capabilities, simple succession was exchanged with a new one. Some of the individuals
are deleted from the population and are exchanged with totally new ones initiated from
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Figure 3. Typical run of the algorithm (second object)

scratch. Individuals for elimination are chosen in a way similar to tournament. So q̃
elements are chosen and the worst of them is eliminated. The rest of the parameters
remains unchanged.

3.2 Results

The algorithm was tested in several runs to find out the best parameter values. Kmin Kmax

Tmin
d Tmax

d

Tmin
i Tmax

i

 =

 0 30
0 30

0.1 300


To increase selective capabilities of the reproduction the tournament size was increased
to q = 4. The process changes in the 50th sampling period. A typical optimization
process is sketched in figure 5.

The adaptation effect can be clearly seen. Especially when we observe changes of the
controller parameters.

It must be noted that the diagram presents individuals just before succession and
thus the new initiated individuals are not seen. Their effect can be observed after 50th
sampling period. The variance of the parameter values increases.

Also the impact of the mutation variance on the adaptation speed and the tuning
quality was investigated. Figure 6 shows the performance index value for the best in-
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Figure 5. Adaptive run of the algorithm

dividual found for two cases. The parameter before stochastic element added to the
genotype is equal to 1

30 or 1
20 .

In the second case the algorithm after the process change is much faster and subop-
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Figure 6. Performance comparison for different mutation parameter

timal parameters sets are reached in a lower number of epochs (sampling periods).

4 Conclusions

The paper presents the new approach to the controller tuning. The dynamic evolution-
ary algorithm is applied. The algorithm operates in real time, simultaneously with the
sampling periods of the control loop.

First conclusion is that such an algorithm can work successfully. Second is that
the optimization algorithm can dynamically operate with time. The algorithm also has
very large potential. The same approach can be used for any type of the algorithm.
Furthermore, we have full flexibility in choosing the cost function.
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