
HGSNash Evolutionary Strategy as an Effective

Method of Detecting the Nash Equilibria in n-Person

Non-Cooperative Games

Krzysztof Jauernig1 and Joanna Ko lodziej2 and Micha l Stys lo

University of Bielsko - Bia la, Department of Mathematics and Computer Science,
Bielsko-Bia la, Poland

1 email: kjauernig@ath.bielsko.pl 2 email: jkolodziej@ath.bielsko.pl

Abstract. We present a parallel hierarchical evolutionary strategy HGSNash
as a new method of detecting the Nash equilibria in n-person non-cooperative
games. The problem of finding the equilibrium points is formulated as a global
optimization problem. A definition of the strategy and results of some simple
numerical experiments are also included.

1 Introduction

Game Theory can be understood as a mathematical theory for making decisions in con-
flicts among decision-makers, called players. A game is a model of strategic interactions
among a number of players. Each player tries to choose the strategy, which maximizes his
utility in taking part in the game. The end result of the game depends on the strategies
chosen by each player. A solution of the game is a systematic description of the outcomes
that may appear in a game. The most commonly encountered solution concept in game
theory is the Nash equilibrium . The problem of detecting the Nash equilibria of a finite
strategic game remains a challenging problem. It can be also formulated as a global
optimization problem (see [5]). In this paper we propose a new parallel evolutionary
strategy HGSNash, especially designed for Nash equilibria detection. It is based on the
HGS algorithm (see [3]), which is a very effective tool in solving ill-posed optimization
problems.

The remainder of the paper is organized as follows. Sections 2 and 3 introduce notions
and state the problem. In section 4 we define the HGSNash strategy. Results of performed
numerical experiments are reported in Section 5. The paper ends with some final remarks.

2 Nash equilibrium in n -person games

Let us assume that n players (n ∈ N) take part in a game.

Definition 2.1. An n - person game Gn can be defined by the tuple (N, {Si}i∈N , {Qi}i∈N)
where:

• N = {1, ..., n} is the set of players,

• {S1, . . . , Sn} (]Si ≥ 2; i = 1, . . . , n) is the set of strategies for the players,

• {u1, . . . , un}; ui : S1 × · · · × Sn → R;∀i∈N is the set of payoff functions of the
players.

The set S(N) ⊂ S1 × · · · × Sn denotes the set of the strategies combinations and is
called a feasible multi strategy for the game. Sometimes the players can cooperate. In
this case we can speak of a cooperative game as opposed to a non-cooperative game, in
which players are not allowed to cooperate. Every player tries to minimize their payoff
function during the game. The most commonly encountered concept of the game solution
is an equilibrium point defined below.

Definition 2.2. An n-dimensional vector (s̄1, . . . , s̄n) of strategies is called an equi-

librium point or Nash equilibrium, if :

∀i∈N ui(s̄1, . . . , s̄n) = min
si∈Si

ui(s̄1, . . . , s̄i−1, si, s̄i+1, . . . , s̄n) (1)

The Nash equilibrium can be interpreted as a steady state of the play of a strategic
game, in which each player holds correct expectations concerning the other players be-
havior. If the strategies chosen by all players are Nash equilibrium, no player is interested
in changing their strategy, because of the decreasing value of their payoff function.

An n-vector ū = (u1(s̄1, . . . , s̄n), . . . , un(s̄1, . . . , s̄n)) is called a value of the game
and the strategies (s̄1, . . . , s̄n) are called pure strategies. It means that they are never
changed during the game.

In this paper we consider only games with non-zero sums for which Nash points are
the results of the minimization of a multi-loss function. We also consider only these Nash
points which are not on the boundary of the admissible domain.

The problem of detecting the Nash equilibria of a finite strategic non-cooperative game
can be also formulated as a global optimization problem.

Let us define a set of loss (cost) functions for the players:

{Q1, . . . , Qn}; Qi : S1 × · · · × Sn → R;∀i=1,...,n (2)

Let us also define a set of players’ response functions ri : S1 × · · · × Sn → R in the
following way:

∀i∈N ri(ŝi) = min
si∈Si

{Qi(s1, ..., sn)}, (3)

where ŝi = (s1, ..., si−1, si+1, ..., sn). The response function defines the optimal strategy
for the player.

We can now define a multi-loss function Q : S1 × · · · × SN → R for the game by the
following formula:

Q(s1,, sn) =

n∑

i=1

[Qi(s1, ..., sn) − min
si∈Si

Qi(s1, ..., sn)] (4)

Note that the multi-loss function has non-negative values. It can be proved (see[2],[5],[8])
that the Nash equilibrium is the result of the global minimization of the function Q. The
players’ strategies are called the decision variables and the players’ loss functions are
called players’ objective functions.

It follows from the definition of the function Q that we need to minimize first the loss
functions of the players and then we can compute the values of the multi-loss function.
Thus the procedure of detection of the Nash equilibria must be a parallel algorithm com-
posed of two cooperated units:

• Main unit - which solves the problem of the global minimization of the Q function,

• Subordinate unit - which solves the problems of the minimization of the players’
loss functions Qi.

The ”Subordinate unit” could be a parallel algorithm designed for the numerical
optimization of the real functions of several variables.

The computation of the gradient of the multi-loss function given by the formula (4)
is usually very hard or impossible. The non-gradient global optimization algorithms
are recommended as the main unit algorithms (for example Powell algorithm or Hooke-
Jeeves algorithm). The non-gradient methods can be also applied for the minimization
of the players loss functions in the subordinate unit. The proposition of such parallel
algorithms are given by Ślepowrońska in [8]. She applied the non-gradient method of the
exterior penalty function or Advanced Controlled Random Search algorithm as the main
units algorithms. She also used in the subordinate unit non-gradient global optimization
algorithms : Hook-Jeeves and Powell methods. But in last few years genetic algorithms
have also become very popular. One of the most effective algorithms is the Hierarchical
Genetic Strategy (HGS).

3 HGSNash algorithm

3.1 Hierarchical Genetic Strategy

Hierarchical Genetic Strategy (HGS), introduced by Ko lodziej et al (see [4]), is a
kind of multideme, parallel evolutionary algorithm, which is a very effective tool in solv-
ing ill-posed global optimization problems with multimodal and weakly convex objective
functions. High efficiency of the strategy comes from the concurrent search in the opti-
mization landscape by many small populations. The sequences of these populations are
defined as the evolutionary dependent processes.

The dependency relation among processes has a tree structure with a restricted num-
ber of levels. The processes of lower order represent chaotic search with low accuracy.
They detect the promising regions on the optimization landscape, in which more accu-
rate process of higher order are activated. Every process creates a branch of the tree.
Populations evolving in different processes can contain individuals which represent the
solution (the phenotype) with different precision. This precision can be achieved by
binary genotypes of different length and by different values of mutation parameter.

The strategy starts with the process of the lowest order called root. After the fixed
number of evolution epochs the best adapted individual is selected. We call this procedure
the metaepoch of the fixed period. After every metaepoch a new process of the higher
order can be activated. This procedure is called the sprouting operation. The detailed
definitions of those procedures can be found in [4]. We can consider two different kinds
of the implementation of HGS: binary and real. In the binary implementation of HGS
(see [3,4]) the individuals have the binary genotypes and the Simple Genetic Algorithm

(SGA) was applied as the law of evolution in every process. The replacement of the SGA
engine by the simple evolutionary algorithm with Gaussian mutation, simple arithmetic
crossover and real coded genotypes increased the efficiency of HGS (see [9]).

3.2 The main idea of HGSNash

The main idea of HGSNash is an adaptation of the Hierarchical Genetic Strategy
(HGS) to the global optimization of the multi-loss game function Q defined by the formula
(4). This adaptation requires a hybridization of the main evolutionary mechanism in
HGS, because of the parallel structure of the multi-loss function optimization procedure.

Phenotypes of the individuals in HGSNash populations are n-dimensional vectors of
the decision variables of the players. We can define genotypes of the individuals by
coding their phenotypes into binary strings or using their real representation. Thus, as
for HGS, we can analyze the binary and real implementations of HGSNash. The basic
mechanism of evolution in HGSNash depends on the implementation type. We applied a
hybrid simple genetic algorithm in the case of the binary HGSNash implementation and
a hybrid simple evolutionary algorithm in the case of its real implementation. Another
genetic operators defined originally for HGS, i.e. sprouting operator, prefix comparison
operator (see [4] and [9] for details), can be directly implemented also in HGSNash.A
k-periodic metaepoch in HGSNash (k ∈ N) can be defined in the way presented in Figure
2.

Start

Initial population

MAIN UNIT

SUBORDINATE

UNIT;max;1;0 niiQ ===

Selection

Min Q1

Fitness eval.

Min Qn

Genetic operations

Resulting population

i>k

Stop

Yes

;1+= ii

No

Figure 1. A k-periodic metaepoch in HGSNash

As the subordinate units in HGSNash we propose non-gradient methods because of
the problems with gradient computation for a wide class of the objective functions. In the
implementation of the method presented in this paper we applied the Powell optimization
method (see[8] for details).

4 Experiments

We performed some simple numerical experiments for the verification of the efficiency of
HGSNash. We divided our test problems into three groups depending on the computa-
tional complexity levels.

4.1 Test problems

Test 1

The goal of the first experiment was the ability of finding the multiple Nash equilibria
in case of the very simple 2-person game rules. The players’ loss function are defined by
the following formulas:

Q1(s1, s2) = (s1 − s2 + 1)2

Q2(s1, s2) = (s2 − s2
1)2 + (s1 − 1)2

where s1 ∈ [−1; 2, 5] and s2 ∈ [−1, 3].
There exist two Nash equilibria for this game:

sn1 = (−0, 618033; 0, 381966)
sn2 = (1, 6180339; 2, 6180339)

Test 2

In this example we also analyze a 2-person game, but each player has 9 decision
variables. The players’ loss functions are defined below:

Q1(s1, ..., s18) = (s1 − 1)2 + (s2 − 1)2 + s2
3 + (s4 − 1)2 + s2

5 + (s6 − 1)2 + (s7 − 1)2

+s2
8 + s2

9 + s2
11 + (s12 − 0, 5)2 + s2

13 + (s16 + 0, 5)2 + (s18 − 1)2

Q2(s1, ..., s18) = (s10 + 1)2 + s2
11 + (s12 − 1)2 + s2

13 + s2
14 + (s15 + 1)2 + (s17 − 1)2

+s2
16 + (s18 − 1)2 + (s2 − 0, 5)2 + s2

3 + (s4 − 0, 5)2 + (s8 − 0, 5)2

where si ∈ [−2, 2], forall i = 1, ..., 18. A solution of this game is the unique Nash
equilibrium:

sn = (1, 1, 0,−1, 0, 1, 1, 0, 0,−1, 0, 1, 0, 0,−1, 0, 1, 1).

4.2 Parameters of the strategy

For solving the problems defined in the previous section we applied 3-levels HGSnash
strategy in both binary and real implementations. Binary coded individuals have geno-
types of different lengths. The genotypes were elongated in populations on the higher

Table 1. Values of parameters for the binary inplementation of 3- levels HGSNash

Parameter Level1 Level2 Level3

Population size 20 10 10

Binary code length 6 12 18

Mutation probability 0,1 0,05 0,025

Crossover probability 0,9 0,9 0,9

Metaepoch period 10 10 10

Table 2. Values of parameters for the real inplementation of 3- levels HGSNash

Parameter Level1 Level2 Level3

Population size 20 10 10

Mutation parameter 1 0,5 0,25

Metaepoch period 10 10 10

levels while the sizes of these populations and the mutation rate were decreased. The
values of all input parameters for the binary implementation of HGSNash are presented
in Table 1.

In the real implementation of HGSNash we applied the Gaussian mutation operator
with the standard deviation defined as a mutation parameter. The values of parameters
set for the 3-levels strategy are sampled in Table 2.

In both implementations of HGSNash we applied as the subordinate unit the Powell
optimization algorithm. As the stop criterion for our strategies we accepted the maximal
number of metaepochs executed in the single run of the algorithm, which was 200 in
every experiment.

4.3 Results of the experiments

Every experiment was repeated 30 times. Table 3 reports the number of runs in which
the global optimum was found (nr) along with the average objective values of the best
individuals found in the end of each run (avg). The real implementation of HGSNash was
better in finding the solutions of all problems. We also wanted to know how quick are
the strategies in detecting the Nash equilibria. Analyzing Table 4 we can see how many
metaepochs were needed for finding all the solutions of the test problems. We expected
that the real implementation of HGSNash should be more effective than the binary one.
We were surprised that it holds only for the first test. Is it true that the real HGSNash
was quicker only for the simplest problem? To answer this question we computed the
average execution times of the algorithms and obtained the sample results in Table 5.

The results show that binary coding, mutation and the crossover of the individuals in
binary HGSNash are very time consuming operations. The strategy was up to 8 times

Table 3. The values of (nr) and (avg) after 200 metaepochs

Strategy Test1 Test1 Test2 Test2

nr avg nr avg

HGSNash binary 20 0,05 17 0,1

HGSNash real 30 0,006 25 0,09

Table 4. The average number of metaepochs needed for finding the Nash equilibria

Strategy Test1 Test2

HGSNash binary 21 16

HGSNash real 7 35

Table 5. The average time of the single run of the strategy (in seconds)

Strategy Test1 Test2

HGSNash binary 8 14

HGSNash real 1 3

slower than its real implementation. In the end we compared the results obtained for the
both HGSNash implementations with the results of the similar experiments performed
for the parallel algorithms ARCS and HJ defined in [8].

One iteration of the ARCS and HJ algorithm was equivalent to the single genetic
period of metaepoch in HGSNash. Only in the third test are the results on the same
level. Evolutionary strategies were much more effective in solving 2-person games.

Table 6. The average number of iterations needed for finding the Nash equilibria

Strategy Test1 Test2

HGSNash binary 210 160

HGSNash real 100 350

ARCS 687 24398

HJ 468 4378

5 Conclusions

• Finding Nash equilibria of strategic games can be difficult and tedious. Algorithms
for solving games have been studied for the beginning of game theory but usually
they are very time consuming.

• the HGSNash strategy presented in this paper is an evolutionary optimization
method based on the Hierarchical Genetic Strategy.

• HGSNash is very effective in solving 2-persons games with very complicated rules
and it is not worse than other parallel algorithms in solving n-person games with
multiple Nash equilibria.

• We would like to find some decision-making problems for the practical application
of HGSNash.

Bibliography

[1] Arabas J.: Lectures on the Evolutionary Algorithms (in Polish), WNT,
Warszawa 2001.

[2] Ewald, C.: Games, Fixed Points and Mathematical Economics.
University of Kaiserslautern 2003/2004.

[3] Ko lodziej J.: Hierarchical genetic Strategy as a New Method in Parallel
Evolutionary Computation, Proc. of the 2-nd International Conf. on
Formal Methods and Intell. Techn. in Control, Decision, Multimedia and
Robotics, Polish-Japanese Institute of Inf. Technology, Warszawa, s. 50-58.

[4] Ko lodziej J., Gwizda la R., Wojtusiak J.: Hierarchical Genetic Strategy as
a Method of Improving Search Efficiency, Advances in Multi-Agent
Systems, R. Schaefer and S. Sȩdziwy (Eds.), UJ Press, Krakw, Chapter 9,
s. 149-161.

[5] Pavlidis N.G. et al: Computing Nash Equilibria Through Computational
Intelligence Methods, J. of Computational and Appl. Math., 175 (2005),
pp.113-136.

[6] Schaefer R., Ko lodziej J.: Genetic Search Reinforced by The Population
Hierarchy, FOGA VII, Morgan Kaufmann, pp. 383-401.

[7] Straffin, P.: Game Theory. Scholar Press (Polish ed.), Warszawa 2004.

[8] Ślepowrońska K.: A parallel algorithm for the Nash equilibria detection
(in Polish) MSc Thesis. Warsaw Technical University Press,
Warszawa 1996.

[9] Wierzba B., Semczuk A., Ko lodziej J. and Schaefer R.: Hierarchical
Genetic Strategy with real number encoding. Proc. of KAEiOG’03.
 Lagów Lubuski, 26-28.05.2003, pp.231-239.

