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Abstract. The paper considers the problem of preemptive scheduling in a two-stage 
flowshop with parallel unrelated machines at the first stage and a single machine at the 
second stage. At the first stage jobs require some amounts of additional renewable 
resources. The objective is the minimization of the makespan. The problem is NP-hard. A 
heuristic which combines column generation technique with a genetic algorithm is 
proposed. Several problems with randomly generated parameters are solved. The results 
indicate that the heuristic is a promising tool for solving the considered problem.  

1 Introduction 

In this paper we propose a new heuristic algorithm for a two-stage flowshop scheduling problem 
with parallel unrelated machines and additional resource constraints at the first stage and a single 
machine at the second stage. A number of jobs have to be processed at two stages, each job being 
processed first at stage 1 then at stage 2. At the first stage, a job can be processed on any machine 
and during its processing it requires some amounts of additional renewable resources. The total 
amounts of these resources available at a moment are limited. It is assumed that preemptions of 
jobs are allowed, and that each machine can work on at most one job at a time and a job can be 
processed on at most one machine at a time. A job can be taken to the second stage as soon as it 
completes its processing at the first stage. Unlimited intermediate storage space is available to 
hold jobs completed at the first stage.  The aim is to find a feasible schedule which minimizes the 
makespan, denoted by maxC ,  which is defined as the maximum completion time of jobs at the 
second stage.      

To the best of our knowledge this problem has not been considered in the literature so far. 
However, such a problem may arise in a manufacturing environment in which products are 
initially processed on any of parallel machines (production lines) and then each product must go 
through a final testing operation, which is to be carried out on a common testing machine. In 
real-life systems that are encountered in process industries, such as chemical, food, cosmetics, 
preemptions of jobs are permitted and usually result in shorter schedules than in the case when 
preemptions are not allowed. Moreover, such systems are often subjected to some additional 
constraints e.g. on the availability of the additional resources such as manpower, fuel flow, tools.  

During the last decade the flowshops with multiple machines, also called hybrid flowshops, 
received considerable attention from researchers. Most literature in this area addresses the 
minimum makespan problems under the assumption that preemptions of jobs are not allowed and 
parallel machines at each stage are identical (e.g. [9, 3, 10, 2, 13, 14]). Only a few papers concern 
the flowshop with parallel machines that are not identical [17, 15]. In these papers no resource 



constraints were considered. A two-stage multiprocessor flowshop scheduling problem with 
preemptions is considered in [12], where it is shown to be NP-hard in the strong sense even in the 
case of two identical parallel machines at one stage and one machine at another.  

2 The Framework of the Heuristic   

The proposed heuristic can be outlined as follows. 
 
1. The problem of unrelated parallel machine scheduling with additional resource constraints 

which occurs at the first stage is optimally solved by a column generation (CG) algorithm 
[5]. The objective is to minimize the makespan (the maximum job completion time at the 
first stage).  
− The solution to the first-stage problem is represented by a set of partial schedules. A 

partial schedule assigns some jobs (or part of jobs) to machines for parallel processing 
during a certain period of time, so that resource constraints are fulfilled at every 
moment. The makespan does not depend on the ordering (sequence) of partial 
schedules. 

− Completion times of jobs at stage 1 depend on the ordering of partial schedules.   
− Jobs that are finished at the first stage are ready to be processed at the second stage. 

They can be stored between the stages. A job starts on the second stage machine as 
soon as this machine is free. 

− The ready time of a job at stage 2 is equal to its completion time at stage 1. 
− The makespan in the two-stage flowshop, which is equal to the maximum job 

completion time at stage 2, depends on the processing times and ready times of jobs at 
stage 2,  so, it depends on the ordering of partial schedules at stage 1.   

− A GA is used for minimizing the makespan in the two-stage flowshop.  
2. A GA operates on a population of individuals (choromosomes) which define the ordering 

of the partial schedules. The makespan is used to evaluate a chromosome. For each 
generated sequence of the partial schedules, a schedule is constructed and the makespan is 
calculated taking into account the ready times and processing times of jobs at stage 2.    

 
To illustrate the performance of the heuristic we present the following example. Consider an 

instance of 10 jobs with the job processing times and resource requirements as shown in Figure 
2. There are two stages: the first stage contains two parallel unrelated machines, the second stage 
consists of one machines. The schedules are presented in Figure 1. In Figure 1a the ordering of 
the partial schedules is 1S , 2S , 3S , 4S , 5S , 6S , 7S , 8S , 9S , 10S  (where kS  denotes the partial 
schedule of index k ).  We can see that at the beginning of the schedule jobs 1 and 9 are 
processed simultaneously on machines of the first stage during some period of time. These two 
jobs belong to the partial schedule of index 1 ( 1S ). Then go: partial schedule 2S  with jobs 7 and 

2, 3S  with jobs 4 and 9, and so on. Job 1 is completely finished in 1S  (in fact it is the first job 

completed at stage 1), while job 9 is not completed until 3S . So, job 1, after its completion at 
stage 1, passes to stage 2 and, as this stage is free, the processing of job1 begins. The next job 
completed at stage 1 (in 2S ) is the job of index 2. After its completion job 2 is stored between 



the stages until the machine of stage 2 is released. The indices of the successive jobs completed 
at stage 1 are: 1, 2, 9, 7, 10, 3, 4, 5, 8, 6.  

In Figure 1b the ordering of the partial schedules is ( 1S , 7S , 2S , 4S , 5S , 8S , 6S , 6S , 10S , 

9S , 3S ). This ordering has been found by the GA so as to minimize the maximum job 
completion time at stage 2 (the makespan of the whole schedule). We can see that the makespan 
in Figure 1b, which is equal to 423.17, is significantly smaller than the makespan in Figure 1a, 
equal to 470. 

As for the resource constraints, each partial schedule satisfies resource constraints at a time. 
For the considered instance, the availability of an additional resource at any moment is 10 units. 
In 1S , job 1 executed on machine 1 requires 6 units (see Figure 2) of an additional resource at a 
time, and job 9 executed on machine 2 requires 3 units of this resource at a time, so the total 
usage of the resource at any moment in this partial schedule is equal to 9 and is less than 10. 
Similarly, all remaining partial schedules satisfy resource constraints at any moment. 

 
a)
partial
sch. index 1 2 3 4 5 6 7 8 9 10
stage
1 m1 1 7 4 7 6 4 8 8 4 8

m2 9 2 9 3 10 3 5 5 6

2 m1 1 2 9 7 10 3 4 5 8 6

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480

b)
partial
sch. index 1 7 2 4 5 8 6 10 9 3
stage
1 m1 1 8 7 7 6 8 4 8 4 4

m2 9 3 2 3 5 10 6 5 9

2 m1 1 2 7 3 10 8 6 5 4 9

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480

 
Figure 1. An illustrative example. The resulting schedules: a) the feasible schedule with a random 
sequence of the partial schedules, b) the final schedule with the sequence of the partial schedules 

minimizing the makespan. 
 
 

processing times at stage 1 processing times at stage 2 resource requirements at stage 1

machine
1 2 1 1 2

job: 1 6 170 job: 1 88 job: 1 6 4
2 138 25 2 9 2 6 1
3 174 115 3 75 3 10 3
4 154 154 4 9 4 4 2
5 178 127 5 61 5 5 6
6 100 92 6 30 6 5 5
7 40 184 7 56 7 9 5
8 141 147 8 17 8 2 6
9 176 57 9 9 9 10 3

10 172 14 10 46 10 8 6

resource availability = 10

machine machine

 

Fig. 2 The data for an illustrative example 



3 Notation   

In this paper jobs are indexed by j , parallel machines at stage 1 by  i , resource types by r . The 
parameters of the problem considered are as follows: 
n  the number of jobs, 
m  the number of machines at stage 1, 
l  the number of types of renewable resources, 

ijp  the processing time of job j  on machine i  at stage 1, 

js  the processing time of job j  on the machine at stage 2, 

rW  the number of units of resource  r  available at a time, 

ijrα  the number of units of resource r  required at every moment during processing job j  
on machine i  at stage 1.  

4   Heuristic Description   

4.1 The First Stage Problem Solving   

As stated in Section 2, first, the problem of resource constrained preemptive scheduling of 
parallel unrelated machines so as to minimize the makespan is solved. The solution to this 
problem is represented by a set S  of partial schedules βS , B∈β , where B  is the set of indices 

of all feasible partial schedules. Partial schedule βS  is determined by its duration β∆  and the 

values of β
ijv  ( nj ,...,1= , mi ,...,1= ) representing an  assignment of jobs to machines, where 

1=β
ijv  if job j  is processed on machine i  in partial schedule βS  and 0=β

ijv , otherwise. The 

problem is formally defined as follows: 
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where β∆  ( B∈β ) and β

ijv  ( nj ,...,1= , mi ,...,1= , B∈β ) are decision variables. 

Constraints (2) ensure that all jobs are completed at the first stage of the two-stage flowshop. 



Constraints (3) and (4) ensure that, respectively, each machine works on at most one job at a 
time and each job is processed on no more than one machine at a time. Due to constraints (5) 
the usage of each resource at every moment does not exceed its availability.  
 In the general case, the above problem is known to be NP-complete [16]. It can be 
optimally solved by means of a CG algorithm. The theoretical basis of the CG technique has 
been provided by Dantzig and Wolfe in [5] (for applications of the CG technique see e.g.  [7, 
1, 6, 4].  
 A CG algorithm does not generate explicitly all columns of the problem, which correspond 
to all partial schedules. It works only with a subset of columns and adds a new column which 
improves the solution. At each iteration of the CG algorithm, the schedule length is minimized 
by solving the LP problem of the form: 
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 can be extended by this new index β  and a new iteration of the CG algorithm 
is started. Otherwise the optimal solution is found and the algorithm stops.  

4.2 Minimal Makespan Schedule Finding   

The aim is the minimization of the makespan in the two-stage flowshop. A GA finds the ordering 
of the partial schedules which provides the schedule for the two-stage flowshop with minimum 
makespan. 

A GA [11] is a search technique that imitates the natural selection and biological evolutionary 
process. GAs have been used in a wide variety of applications, particularly in combinatorial 
optimization problems and they were proved to be able to provide near optimal solutions in 
reasonable time.   

A GA starts with a population of randomly generated candidate solutions (called 
chromosomes). A chromosome is represented by a string of numbers called genes. Each 
chromosome in the population is evaluated according to some fitness measure. Certain pairs of 
chromosomes (parents) are selected on the basis of their fitness. Each of these pairs combines to 
produce new chromosomes (offspring) and some of the offspring are randomly modified. A new 



population is then formed replacing some of the original population by an identical number of 
offspring. The process is repeated until a stopping criterion is met.  

Let )(tP  denotes the population at iteration t  and sizepop _  is the population size. The GA 
applied in this paper can be outlined as follows. 

 
1. Generate and evaluate the initial population )(tP , t =0. 
2. Repeat the following steps until stopping condition is satisfied. 

2.1. Repeat the following loop 2/_ sizepop  times ( sizepop _  is an even number). 
2.1.1. Select two parents from )(tP . 
2.1.2. Apply the crossover operator over the parent chromosomes and produce 2 

offspring chromosomes. 
2.1.3. Apply the mutation operator over the offspring. 
2.1.4. Copy the offspring to population )1( +tP . 

2.2. Evaluate )1( +tP . 
2.3. Replace the worst chromosome of )1( +tP  by the best chromosome found so far. 
2.4. Set 1+= tt . 

3. Return the best chromosome found. 
 

The factors which characterize the GA applied to the problem considered in this paper are 
determined as follows.  

Solution representation. A solution to the sequencing problem solved by the GA is coded as a 
single chromosome whose genes represent the indices of partial schedules.  

Initial population. An initial population of chromosomes is randomly generated. 

Evaluation. The value of an objective function, which is equal to the makespan in the two-stage 
flowshop, is used to measure the fitness of a chromosome. For each partial schedule sequence 
(chromosome) generated in the search process, a schedule for the two-stage flowshop is 
constructed and the makespan is calculated taking into account ready times and processing times 
of jobs at the second stage.  

Parent selection. The binary tournament selection method is used. In a binary tournament 
selection, two chromosomes are randomly chosen. The more fit (with a smaller objective 
function value) is then taken as a parent chromosome. Two binary tournaments are held to 
produce two parents.  

Crossover. The two-point crossover operator PMX [9] is applied to each pair of parent 
chromosomes with a probability crsP  (crossover probability).  

Mutation. The genes of each chromosome in the population are considered one by one, and the 
gene being considered swaps its value with another randomly generated gene of the same 
chromosome with a probability mutP  (mutation probability). 



Stopping condition. The search process terminates when the best objective function value 
(makespan) found so far is not updated for a predetermined number of iterations.  

 
On the basis of the preliminary computational experiment the following values of the genetic 

parameters which ensure a good performance of the algorithm were selected:  sizepop _ =30, 

crsP =0.8, mutP =0.01, the number of iterations without any improvement of the best solution 
found so far is set at 250. 

5   Computational Experiment   

The heuristic was tested on six problem instances with the number of jobs =n 20, 60, and 100, 
the number of machines =m 2 and 4, and one resource type. Resource requirements ijrα  were 

generated from ]9,1[U  ( ],[ baU  denotes the discrete uniform distribution in the range of 
],[ ba ), whereas the resource availability, 1W , was set at 10. Processing times at the first stage, 

ijp , were generated from ]200,1[U  and ]300,1[U  for  instances with 2 and 4 machines, 

respectively, whereas processing times at stage 2, js , were generated from ]100,1[U  for all 

instances.  

Table 1. Results of a computational experiment 

n  m  LB maxC   CPU time (s) 
20 2 1062.00 1098.84  0.74 

 4 1005.00 1049.89  2.22 
60 2 3191.00 3191.00 * 4.00 

 4 2966.00 2966.00 * 12.61 
100 2 5032.00 5032.00 * 10.39 

 4 5268.00 5269.00  16.50 
 

The results of the experiment are presented in Table 1. The first two columns show the size of 
an instance. In column 3, the lower bound on the makespan is presented which is defined as 
follows: },max{ 21 LBLBLB = , where }{min ,,1
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. The makespan for the two-stage flowshop scheduling problem 

found by the heuristic and, the CPU time (in seconds) are shown in columns 4 and 5, 
respectively.    

From the Table we can see that the performance of the heuristic is good. For three instances 
(indicated by *) the optimal solution was found. For the instance with 100 jobs and 4 machines 
the solution is near-optimal one. The results suggest that the heuristic is able to produce very 
good results especially for problems with a great number of jobs.  

The computation time increases with the number of jobs and machines but does not exceed a 
few seconds for all examined instances. 



6   Conclusions  

In this paper a heuristic combining the column generation algorithm with the genetic algorithm 
for solving the two-stage flowshop preemptive scheduling problem with parallel unrelated 
machines and resource constraints at the first stage, and a single machine at the second stage has 
been developed. The heuristic seems to be a promising tool for solving the considered problem.  
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