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Abstract. In this paper three models of polymorphic viruses are presented. These
models had to capture self-reproduction, evolution and damaging payload of poly-
morphic viruses. They have been derived using a formal model of Evolutionary
Computation the Evolutionary Turing Machine, cellular space models, and the $-
calculus process algebra for problem solving. Some preliminary results associated
with these models are discussed.

1 Introduction

A computer virus is a program that can reproduce itself by attaching its code to another
program (analogous how biological viruses reproduce), and damaging by its payload
victim’s programs. Worms are like viruses but are self replicating, i.e., they do not need
a host program carrier to reproduce and act. Viruses are instances of malicious code
sometimes referred to as malware.

The term computer virus is derived from and is in some sense analogous to a biological
virus. The word virus itself is Latin for poison. Simplistically, biological viral infections
are spread by the virus (a small shell containining genetic material) injecting its contents
into a larger organism’s cell. The cell then is infected and converted into a biological
factory producing replicants of the virus.

Similarly, a computer virus is a segment of machine code (typically 200-4000 bytes)
that will copy itself (or a modified version of itself) into one or more larger “host”
programs when it is activated. When these infected programs are run, the viral code is
executed, and the virus spreads further [21].

There are many types of computer viruses, including companion, excutable program,
memory, boot sector, device driver, macro, and source code viruses. Since a computer
virus is a program, it can do anything a program can do [22]. Similar to faults in
fault-tolerance techniques, viruses can be avoided, detected, diagnosed, contained and
recovered from. Antivirus software companies use typically virus scanners to detect
computer viruses. In general, the problem of virus detection is undecidable [1]. Virus
scanners, by necessity approximate the detecion of viruses from the list of known viruses.
Viruses try to hide and users try to find them. Hiding of viruses from detection can be
done using compression, encryption, or evolution.

Most of computer viruses are static, i.e., their offsprings are exact copies of the par-
ent. Polymorphic viruses on the other hand are viruses that evolve from generation to
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generation. Thus they are very closely related both to evolutionary computation and
Artificial Life.

Polymorphic viruses contain a piece of code, called a mutation engine, that can mutate
a sequence of machine instructions without changing its functionality, and sophisticated
viruses contain mutation engines to mutate the decryptor from copy to copy. The muta-
tion engine itself can be hidden by encrypting it along with the body of the virus. Very
little is known about formal models of computer viruses [23, 14]. Even less is known
about models of polymorphic viruses. Formal modeling is important because it would al-
low to understand better the nature of polymorphic viruses and to design a more efficient
antivirus software.

In this paper we present three models of polymorphic viruses using Evolutionary Tur-
ing Machine, cellular space models, and the $-calculus. The paper is organized as follows:
section 2 contains basic definitions how to measure problem-solving performance. In sec-
tion 3, a formal model of Evolutionary Computation, an Evolutionary Turing Machine
(ETM) is presented and polymorphic viruses are expressed as an ETM. In section 4,
polymorphic viruses are modeled by automata networks. Section 5, proposes the third
model of polymorphic viruses using the $-calculus process algebra for bounded rational
agents. Section 6 contains the conclusions and future work.

2 Measuring Problem-Solving Performance

An algorithm provides a recipe to solve a given problem. It consists of a finite number
of steps/actions, each having well-defined and implementable meaning. An algorithm
starts from the initial state and terminates (if successful) in one terminal state from the
set of terminal/goal states. If the algorithm reaches its goal state, then we say that the
algorithm satisfied its goal and problem has been solved. The goal test (also called a
termination condition) determines whether a given state is a goal state. The set of states
that is reachable from the initial state forms the search space of the algorithm. Thus
the solution of the problem can be interpreted as a search process through the set of
states. The state space forms a directed graph (or its special case - a tree) in which
nodes are states and the arcs between nodes are actions. Search can be deterministic
or nondeterministic/probabilistic. Mulitple solutions can be ranked using an objective
function (e.g., a utility or fitness function). In particular, there can be none, one, or
several optimal solutions to the problem. Using objective functions allows capturing
the process of iterative approximation of solutions and different qualities of solutions in
contrast to simply a binary decision: a goal reached or not.

The performance of search algorithms can be evaluated in four ways (see e.g. [19])
capturing whether a solution has been found, its quality and the amount of resources
used to find it.

Definition 1. We say that the search algorithm is
• Complete if it guarantees reaching a terminal state/solution if there is one.
• Optimal if the solution is found with the optimal value of its objective function.
• Search Optimal if the solution is found with the minimal amount of resources used

(e.g., the time and space complexity).
• Totally Optimal if the solution is found both with the optimal value of its objective

function and with the minimal amount of resources used.



Definition 2. Given an objective function f : A×X → R, where A is an algorithm space
with its input domain X and codomain in the set of real numbers, R, problem-solving can
be considered as a multiobjective minimization problem to find a∗ ∈ AF and x∗ ∈ XF ,
where AF ⊆ A are terminal states of the algorithm space A, and XF ⊆ X are terminal
states of X such that

f(a∗, x∗) = min{f1(f2(a), f3(x)); a ∈ A, x ∈ X}

where f3 is a problem-specific objective function, f2 is a search algorithm objective func-
tion, and f1 is an aggregating function combining f2 and f3.

Without losing generality, it is sufficient to consider only minimization problems. An
objective function f3 can be expanded to multiple objective funtions if problem considered
has several objectives. The aggregating function f1 can be arbitrary (e.g., additive,
multiplicative, a linear weighted sum). The only requirement is that it captures properly
the dependence between several objectives. In particular, if f1 becomes an identity
function, we obtain the Pareto optimality

f(a∗, x∗) = min{(f2(a), f3(x)); a ∈ A, x ∈ X}

Using Pareto optimality is simpler, however we lose an explicit dependence between
several objectives (we keep a vector of objectives ignoring any priorities, on the other
hand, we do not have problems combining objectives if they are measured in different
“units”, for example, an energy used and satisfaction of users). For fixed f2 we consider
an optimization problem - looking for minimum of f3, and for fixed f3 we look for
minimum of search costs - search optimum of f2.

Objective functions allow capturing covergence and the convergence rate of construc-
tion of solutions much better than symbolic goals. Obviously every symbolic goal/ termi-
nation condition can be expressed as an objective function. For example, a very simple
objective function can be the following: if the goal is satisfied the objective is set to 1,
and if not to 0. Typically, much more complex objective functions are used to better
express the evolutions of solutions.

Let (A∗, X∗) denotes the set of totally optimal solutions. In particular X∗ denotes
the set of optimal solutions, and A∗ the optimal search algorithms.

Let Y be a metric space, where for every pair of its elements x, y there is assigned
the real number D(x, y) ≥ 0, called distance, satisfying three conditions [11]:

1. D(x, x) = 0,
2. D(x, y) = D(y, x)
3. D(x, y) + D(y, z) ≥ D(x, z)

The distance function can be defined in different ways, e.g., as the Hamming distance,
Euclidean distance, D(x, y) = 0 if x satisfies termination condition and D(x, y) = 1
otherwise. To keep it independent from representation, and to allow to compare different
solving algorithms, we will fix the distance function to the absolute value of difference
of the objective functions D(x, y) = |f(x) − f(y)|. We extend the definition of the
distance from the pairs of points to the distance between a point and the set of points
D(x, Y ) = min{|f(x)− f(y)|; y ∈ Y }

In problem solving, we will be interested in the distance to the set of optimal solutions
Y ∗, i.e., in the distance



D((a, x), (A∗, X∗)), and in particular D(x,X∗),D(a,A∗), where x ∈ X is the solution of
the given problem instance, and a ∈ A is the algorithm producing that solution.

Definition 3. For any given problem instance, its solution evolved in the discrete time
t = 0, 1, 2, ... will be said to be
• convergent to the total optimum iff there exists such τ that for every t > τ

D((a[t], x[t]), (A∗, X∗)) = 0,
• asymptotically convergent to the total optimum iff for every ε, ∞ > ε > 0, there

exists such τ that for every t > τ D((a[t], x[t]), (A∗, X∗)) < ε,
• convergent with an error ε to the total optimum, where ∞ > ε > 0 iff there exists

such τ that for every t > τ D((a[t], x[t]), (A∗, X∗)) ≤ ε,
• divergent, otherwise.

If solution is convergent and τ is fixed, then the convergence is algorithmic, other-
wise is nonalgorithmic. Asymptotic convergence is always nonalgorithmic (the time is
unbounded).

Definition 4. The convergence rate to the total optimum is defined as
D((a[t], x[t]), (A∗, X∗))−D((a[t + 1], x[t + 1]), (A∗, X∗)).

The covergence rate describes the one-step performance of the algorithm, where the
positive convergence rate means that the algorithm drifts towards the optimum and the
negative rate signifies a drift away from the optimum. With positive convergence rate, the
search algorithm will typically converge or asymptotically converge to the optimum. The
best search algorithms will have typically a high convergence rate and a small number of
steps to reach the optimum.

In the similar way, optimal and search optimal convergence and convergence rate can
be defined. If the search algorithm is probabilistic, we use an expected value of the
distance function.

3 Evolutionary Turing Machines

An evolutionary algorithm is a probabilistic beam hill climbing search algorithm directed
by the fitness objective function. The beam (population size) maintains multiple search
points, hill climbing means that only a current search point from the search tree is
remembered, and a termination condition very often is set to the optimum of the fitness
function.

Definition 5. A generic evolutionary algorithm (EA) can be described in the form of
the functional equation (recurrence relation) working in a simple iterative loop in discrete
time t, called generations, t = 0, 1, 2, ... [16, 8]:

x[t + 1] = s(v(x[t])), where

x ⊆ X - is a population under a representation consisting of one or more individuals
from the set X (e.g., fixed binary strings for GAs, Finite State Machines for EP,
parse trees for GP, vector of reals for ES),

s - is a selection operator (e.g., truncation, proportional, tournament),
v - is a variation operator (e.g., variants of mutation and crossover),



x[0] - is an initial population,
F ⊆ X is the set of final populations satisfying the termination condition (goal of evo-

lution). The desirable termination condition is the optimum of the fitness function
f(x[t]) - of the best individual in the population x[t] ∈ F , where f is defined typi-
cally in the domain of nonnegative real numbers. In many cases this optimum is not
possible to achieve or verify, thus the another stopping criterion is used (e.g., the
maximum number of generations, the lack of progress through several generations.).

The above equation is applicable to all typical EAs, including Genetic Algorithms
(GA), Evolutionary Programming (EP), Evolution Strategies (ES), and Genetic Pro-
gramming (GP). It is possible to use it to describe other emerging subareas like ant
colony system [2], or particle swarm optimization [10]. Co-evolutionary algorithms use
typically multiple populations, i.e., vectors of vectors are evolved. In fact, there is no
restriction on the type of representation used. Sometimes only the order of variation and
selection are reversed, i.e., selection is applied first, and variation second. Variation and
selection depend on the fitness function. Of course, it is possible to think and implement
more complex variants of evolutionary algorithms.

Evolutionary algorithms evolve population of solutions x, but they may be the sub-
ject of self-adaptation (like in ES) as well. This extension has been used in Evolution
Strategies (although typically is limited only to ES parameter optimization, e.g., evo-
lution of standard deviation in Gaussian mutation). Technically, the above means that
the domain of the variation operator v, selection operator s, and the fitness function f
are extended to operate both on the population under representaion x as well as on the
encoding of the evolutionary algorithm.

Now, we define a formal model of Evolutionary Computation - an Evolutionary Turing
Machine [5, 7].

Definition 6. An Evolutionary Turing Machine (ETM) is a series of (possibly infinite)
Turing Machines TM [t] working on population x[t] in generations t = 0, 1, 2, ..., where
• each δ[t] transition function of Turing Machine TM [t] represents (encodes) an evo-

lutionary algorithm with population x[t], and evolved in generations 0, 1, 2, ..., t,
• only generation 0 is given in advance, and any other generation depends on its

predecessor only, i.e., the outcome of the generation t = 0, 1, 2, ... is the pair
(TM [t + 1], x[t + 1]) by applying the recursive variation v and selection s oper-
ators working on population x[t] and on the evolutionary algorithm/transitions δ[t]
as well,
• (TM [0], x[0]) is the initial Turing Machine operating on its input - an initial pop-

ulation x[0],
• the goal (or halting) state of ETM is represented by any pair (TM [t], x[t]) satisfy-

ing the termination condition. The desirable termination condition is the optimum
of the fitness performance measure
f(TM [t], x[t], t) = f1(f2(M [t], t), f3(x[t], t), t) of the best individual from the popu-
lation of solutions and evolutionary algorithms, where f1 is an aggregating function,
f2 is an evolutionary algorithm fitness function, and f3 is a problem-specific fitness
function. The fitness function, without confusion, is denoted as
f(TM [t], x[t]) = f1(f2(M [t]), f3(x[t])) in short. If the termination condition is
satisified, then the ETM halts (t stops to be incremented), otherwise a new pair
TM [t + 1] and its input/population x[t + 1] is generated.



Note that because the fitness function can be the subject of evolution as well (it is
a part of TM control δ), evolution is an infinite process. Note also, that by definition,
evolution is a self-adaptive process, i.e., an evolutionary algorithm/TM ”hardware” δ[t]
is changeable as well. This means that variation operators are extended both to evolve
population x and evolutionary algorithm itself. Currently in most cases an evolutionary
algorithm is static, or at least changing much slower compared to the rate of change
of its population x. Changing the transiton function δ[t] of the TM can be thought
as some kind of evolvable hardware, or assuming fixed hardware we can think about
reprogrammable evolutionary algorithms. This leads us immediately, following Turing’s
ideas, to the notion of the Universal Turing Machine and its extension - a Universal
Evolutionary Turing Machine.

In general, every evolutionary algorithm (EA) can be encoded as an instance of
TM M operating on population x, i.e., pairs (M,x) consisting of a Turing machine M
encoding of EA (of course, for every algorithm, this is possible) and its input x being
the specific input of the Universal Turing Machine UTM. This applies to EAs operating
on real numbers as well (we can encode/approximate real numbers in a digital form with
an arbitrary precision). We can use for that, for instance, the IEEE 754 floating point
representation standard. For recursive (algorithmic) solutions this will be sufficient (it
may not suffice for nonrecursive solutions).

Then a Universal Evolutionary Algorithm represents instances of Turing Machines
from a Universal Turing Machine representing all possible evolutionary algorithms. In
other words, the Universal Evolutionary Algorithm consists of all pairs (M,x), where M
is TM encoding of evolutionary algorithm, and x is its input population.

We can define a Universal Evolutionary Turing Machine as an abstraction of all
possible ETMs, in the similar way, as a Universal Turing Machine has beed defined, as
an abstraction of all possible Turing Machines.

Definition 7. A Universal Evolutionary Turing Machine UETM is a series of (possibly
infinite) instances of Universal Turing Machines (M [t], x[t]):

(M [t], x[t])t=0,1,2,... = [(M [0], x[0]), (M [1], x[1]), ...],

working on populations (M [t], x[t]) in generations t = 0, 1, 2, ..., where
• each M [t] represents (encodes) an evolutionary algorithm with population x[t], and

evolved in generations 0, 1, 2, ..., t,
• only generation 0 is given in advance, and any other generation depends on its

predecessor only, i.e., the outcome of generation t = 0, 1, 2, ... is the pair (M [t +
1], x[t+1]) by applying the recursive variation v and selection s operators operating
on population x and (possibly) on evolutionary algorithm M as well,

• (M [0], x[0]) is the initial evolutionary algorithm M [0] operating on its input - an
initial population x[0],
• the goal (or halting) state of UETM is represented by any pair (M [t], x[t]) satisfying

the termination condition. The desirable termination condition is the optimum of
the fitness performance measure f(M [t], x[t]) = f1(f2(M [t]), f3(x[t])) of the best
individual from the population of solutions and evolutionary algorithms, where f1

is an aggregating function, f2 is an evolutionary algorithm fitness function, and f3

is a problem-specific fitness function. If the termination condition is satisfied, then



the UETM halts (t stops to be incremented), otherwise a new pair M [t + 1] and its
input/population x[t + 1] is generated.

In other words, by a Universal Evolutionary Turing Machine (UETM) we mean such
ETM which takes as the input a pair (M [t], x[t]) and behaves like ETM M [t] with input
x[t] for t = 0, 1, 2, .... UETM stops when ETM stops.

Note that ETM evolves TM transition functions (i.e., it can be said that it is a kind
of evolvable hardware), whereas UETM shifts evolution to be done in software primarily.

3.1 Polymorphic Viruses as ETMs

We will describe polymorphic viruses and its environament (infected programs) as
special instances of the Universal Evolutionary Turing Machine.

Definition 8. A polymorphic virus together with its infected environment is a series of
(possibly infinite) instances of Universal Turing Machines (V [t], x[t]):

(V [t], x[t])t=0,1,2,... = [(V [0], x[0]), (V [1], x[1]), ...],

working on populations (V [t], x[t]) in generations t = 0, 1, 2, ..., where
• each V [t] represents (encodes) a polymorphic virus code in the environment x[t],

and evolved in generations 0, 1, 2, ..., t,
• only generation 0 is given in advance, and any other generation depends on its

predecessor only, i.e., the outcome of generation t = 0, 1, 2, ... is the pair (V [t +
1], x[t+1]) by applying the recursive variation v and selection s operators operating
on population x and evolving virus V by its mutation engine as well,

• (V [0], x[0]) is the initial polymorphic virus V [0] operating on its input - an initial
programming environment x[0],
• the goal (or halting) state of UETM is represented by any pair (V [t], x[t]) satisfy-

ing the termination condition. The desirable termination condition is the optimum
of the fitness performance measure f(V [t], x[t]) = f1(f2(V [t]), f3(x[t])) of the best
individual from the population of infected programs and polymorphic viruses, where
f1 is an aggregating function, f2 is a polymorphic virus fitness function capturing
its ability to reproduce and damage its environment x[t], and f3 is a problem-specific
fitness function (describing performance of non-infected environment). If the ter-
mination condition is satisfied, then the UETM halts (t stops to be incremented),
otherwise a new pair V [t + 1] and its input/population x[t + 1] is generated. From
the point of view of anivirus techniques (infected environment), f should be equal
to f3, i.e., virus has to be neutralized fully. From the point of view of polymorphic
virus f should mimic f2.

4 Cellular Space Models

Cellular space (or automata) based models include cellular automata, neural nets and
automata networks. We will concentrate here on cellular automata and random automata
networks.

Cellular automata are closely associated with the notion of artificial life. Artificial Life
studies biological phenomena by attempting to reproduce them in an alternate media:



software (virtual life), wetware (alternative life) or hardware (synthetic life) [13]. Typi-
cal representatives of each category are cellular automata, biomolecular engineering, and
cellular computers - each operating in its own environment. Research on self-replicating
systems is important because it considers the possibility of self-reproduction, self-repair,
and cooperation. Some systems [15] allow for self-replication (creation of a copy of the
original structure), and some for universal computation (in the sense of universal Turing
machine), and some for universal construction (a machine can construct whatever ma-
chine’s description is given as input, including itself). Categories of cellular space models
include cellular automata, non-uniform cellular automata [20] (not identical transitions
rules for cells), and models with complex automata networks (not identical transitions
rules and graph is not regular) [9].

Cellular automata [25], originally introduced by von Neumann and Ulam are a clas-
sical example of ALife [13].

Definition 9. A cellular automaton [9] is a pair (D, {M}) consisting of a cellular space
(D, {Q}) (countably infinite, locally-finite regular (each node has the same degree) di-
rected graph D with states Q assigned to each node) and common finite-state machine
M with input alphabet Σ = Qd, Qd = Q× ...×Q (d times) and local transition functions

δ : Q× Σ→ Q

The global evolution (dynamics) of a cellular automaton is a discrete dynamical system
(self-map) T : C × C, where C = Πi Q is a set of configurations (total states)

T (x)i = δ(xi, xi1 , ..., xid
)

A cellular automaton operates locally as follows. A copy of a common finite state
machine M occupies each vertex of a regular graph (cellular space) which is a cell. Syn-
chronously, each copy of M looks up its input in the states xi1 , ..., xid

of its neighboring
cells and its own state xi, and then changes its state according to its local dynamics δ.
The cellular automaton performs its calculation by repeating these atomic local rules a
possibly very large number of times for all sites resulting in an emergent behavior (global
dynamics) of the whole system.

Von Neumann was interested whether minimal CA can be built such that UTM can
be embedded (will be computation universal), can construct any other automaton (will
be construction universal), can reproduce itself (subset of construction universality)

Von Neumann answered all these affirmatively. The bad news was that unfortunately
the level of description of his universal constructor was too fine to be simulated, and
additionally, the design was left by von Neumann incomplete (it was completed by his
student A.W. Burks after von Neumann death). Von Neumann’s 2D Euclidean (i.e., 4
NEWS neighbors, but truly 5 neighbors if to count itself as a neighbor) CA (with 29
states for each cell, i.e., |Q| = 29) , weakly rotation symmetric CA, consisting of many
millions (!) of cells, was initially considered with the property of construction universality,
and von Neumann showed that his CA was capable of simulating an arbitrary Turing
machine (i.e., it was construction and computation universal).

Chris Langton in 1984 at Santa Fe Institute [12] dropped the criterion of univer-
sal construction (only reproduction, no universal constructibility or computability) and
simulated pure self-reproduction. Langton was able to show the complete reproduction



process of its constructor (i.e., Langton’s SR loop) by creating a snail-shaped pattern
growing on a cellular space. He used an 8-state, 86-cell loop that required 108 replica-
tion/FSM transition rules. With respect to computer science, this result was a remarkable
milestone, but with respect to universal reproduction, Langton’s loop did nothing but
propagated: the description was restricted to the development of the copy (no universal
construction or computability). Other self-reproducing models can be found in [15].

4.1 Polymorphic Viruses in Cellular Space Models

Von Neumann’s universal constructor should be able to model self-reproduction and
payload of polymorphic viruses, however it is too complex and to general to be useful
to model computer viruses. On the other hand, Langton’s loop can model only pure
self-reproduction, thus at most it can model computer worms without payload and envi-
ronment, i.e., it is too simplistic for our purposes.

Additionally, the requirement that all cells have to be the same and with the same
number of neighbors is too restrictive. For sure, infected programs and viruses contain
different piece of code. Automata networks do not have such restrictions: cells can
be modeled by different finite automata, and the number of neighbors can vary. Of
course, cellular automata are a special case of automata networks, thus formally automata
networks can model universal construction and self-reproduction too.

Definition 10. Formally, an automata network [9] is a pair (D, {Mi}) consisting of a
cellular space (D, {Qi}) (countably infinite, locally-finite directed graph D with states Qi

assigned to i-th node) and an associated family of finite-state machines Mi (only finitely
many of which are distinct) with input alphabet Σi = Qi1× ...×Qidi and local transition
functions

δi : Qi × Σi → Qi

The global evolution (dynamics) of an automata network is best viewed as a discrete
dynamical system (self-map) T : C×C, where C = Πi Qi is a set of configurations (total
states)

T (x)i = δi(xi, xi1 , ..., xidi
)

An automata network operates locally as follows. A copy of a finite-state machine Mi

occupies each vertex (cell) i of D. Synchronously, each copy Mi looks up its input in the
states xi1 , ..., xidi

of its neighbor cells and its own state xi, and then changes its state
according to a local dynamics δi. Next the atomic move is repeated any (possibly very
large) number of times.

There are two alternative ways to model polymorphic viruses as automata networks:
with or without explicit fitness function. In first approach we partition the set of all cells
Mi into cells infected by viruses Vi and healthy cells Hi. Then the transition functions
are responsible for replication and payload of viruses. The final states of automata
represent the goal of normal or infected cells. In this approach is difficult to capture
effects of viruses and anti-virus software. To capture that instead of terminal states,
we can use explicit fitness functions. Each cell will have its associated fitness function
f(Mi) = f1(f2(Vi), f3(Hi)), where f1 is an aggregating function, f2 is a fitness function
capturing infection of cell Mi converted to infected cell Vi, and f3 is a fitness function
of the healthy cell. For healthy cell f2 is equal to 0. From the point of view of anivirus



techniques (infected environment), f should be equal to f3, i.e., virus has to be neutralized
fully. From the point of view of polymorphic virus f should mimic f2.

5 The $-Calculus Process Algebra of Bounded Rational Agents

The $-calculus is a mathematical model of processes capturing both the final outcome of
problem solving as well as the interactive incremental way how the problems are solved.
The $-calculus is a process algebra of Bounded Rational Agents for interactive problem
solving targeting intractable and undecidable problems. It has been introduced in the
late of 1990s [3, 4, 24, 6]. The $-calculus (pronounced cost calculus) is a formalization
of resource-bounded computation (also called anytime algorithms), proposed by Dean,
Horvitz, Zilberstein and Russell in the late 1980s and early 1990s [19]. Anytime algo-
rithms are guaranteed to produce better results if more resources (e.g., time, memory)
become available. The standard representative of process algebras, the π-calculus [17] is
believed to be the most mature approach for concurrent systems.

The $-calculus rests upon the primitive notion of cost in a similar way as the π-
calculus was built around a central concept of interaction. Cost and interaction concepts
are interrelated in the sense that cost captures the quality of an agent interaction with its
environment. The unique feature of the $-calculus is that it provides a support for prob-
lem solving by incrementally searching for solutions and using cost to direct its search.
The basic $-calculus search method used for problem solving is called kΩ-optimization.
The kΩ-optimization represents this “impossible” to construct, but “possible to approx-
imate indefinitely” universal algorithm. It is a very general search method, allowing
simulation of many other search algorithms, including A*, minimax, dynamic program-
ming, tabu search, or evolutionary algorithms. Each agent has its own Ω search space
and its own limited horizon of deliberation with depth k and width b. Agents can coop-
erate by selecting actions with minimal costs, can compete if some of them minimize and
some maximize costs, and be impartial (irrational or probabilistic) if they do not attempt
optimize (evolve, learn) from the point of view of the observer. It can be understood as
another step in the never ending dream of universal problem solving methods recurring
throughout all computer science history. The $-calculus is applicable to robotics, soft-
ware agents, neural nets, and evolutionary computation. Potentially it could be used for
design of cost languages, cellular evolvable cost-driven hardware, DNA-based computing
and molecular biology, electronic commerce, and quantum computing. The $-calculus
leads to a new programming paradigm cost languages and a new class of computer ar-
chitectures cost-driven computers.

In $-calculus everything is a cost expression: agents, environment, communication,
interaction links, inference engines, modified structures, data, code, and meta-code. $-
expressions can be simple or composite. Simple $-expressions α are considered to be
executed in one atomic indivisible step. Composite $-expressions P consist of distin-
guished components (simple or composite ones) and can be interrupted. The $-Calculus
syntax is presented below.

Definition 11. The $-calculus The set of $-calculus process expressions consists of simple
$-expressions α and composite $-expressions P , and is defined by the following syntax:



α ::= ($i∈I Pi) cost
| (→i∈I c Pi) send Pi with evaluation through

channel c
| (←i∈I c Xi) receive Xi from channel c
| (′i∈I Pi) suppress evaluation of Pi

| (ai∈I Pi) defined call of simple $-expr. a
with parameters Pi

| (āi∈I Pi) negation of defined call of simple
$-expression a

P ::= (◦ i∈I α Pi) sequential composition
| ( ‖ i∈I Pi) parallel composition
| ( ∪∪ i∈I Pi) cost choice
| ( ∪+ i∈I Pi) adversary choice
| (ti∈I Pi) general choice
| (fi∈I Pi) defined process call f with param.

Pi, and its associated definition
(:= (fi∈I Xi) R) with body R

The indexing set I is a possibly countably infinite. In the case when I is empty,
we write empty parallel composition, general, cost and adversary choices as ⊥ (block-
ing), and empty sequential composition (I empty and α = ε) as ε (invisible transparent
action, which is used to mask, make invisible parts of $-expressions). Adaptation (evolu-
tion/upgrade) is an essential part of $-calculus, and all $-calculus operators are infinite
(an indexing set I is unbounded). The $-calculus agents interact through send-receive
pair as the essential primitives of the model.

Sequential composition is used when $-expressions are evaluated in a textual order.
Parallel composition is used when expressions run in parallel and it picks a subset of
non-blocked elements at random. Cost choice is used to select the cheapest alternative
according to a cost metric. Adversary choice is used to select the most expensive al-
ternative according to a cost metric. General choice picks one non-blocked element at
random. General choice is different from cost and adversary choices. It uses guards
satisfiability. Cost and adversary choices are based on cost functions. Call and definition
encapsulate expressions in a more complex form (like procedure or function definitions
in programming languages). In particular, they specify recursive or iterative repetition
of $-expressions.

Simple cost expressions execute in one atomic step. Cost functions are used for
optimization and adaptation. The user is free to define his/her own cost metrics. Send
and receive perform handshaking message-passing communication, and inferencing. The
suppression operator suppresses evaluation of the underlying $-expressions. Additionally,
a user is free to define her/his own simple $-expressions, which may or may not be
negated.

We define the operational semantics of the $-calculus using the kΩ-search that cap-
tures the dynamic nature and incomplete knowledge associated with the construction of
the problem solving tree.



The basic $-calculus problem solving method, the kΩ-optimization, is a very general
search method providing meta-control, and allowing to simulate many other search al-
gorithms, including A*, minimax, dynamic programming, tabu search, or evolutionary
algorithms [19]. The problem solving works iteratively: through select, examine and
execute phases. In the select phase the tree of possible solutions is generated up to k
steps ahead, and agent identifies its alphabet of interest for optimization Ω. This means
that the tree of solutions may be incomplete in width and depth (to deal with complex-
ity). However, incomplete (missing) parts of the tree are modeled by silent $-expressions
ε, and their cost estimated (i.e., not all information is lost). The above means that
kΩ-optimization may be (if some conditions are satisfied) complete and optimal. In the
examine phase the trees of possible solutions are pruned minimizing cost of solutions,
and in the execute phase up to n instructions are executed. Moreover, because the $
operator may capture not only the cost of solutions, but the cost of resources used to
find a solution, we obtain a powerful tool to avoid methods that are too costly, i.e.,
the $-calculus directly minimizes search cost. This basic feature, inherited from any-
time algorithms, is needed to tackle directly hard optimization problems, and allows to
solve total optimization problems (the best quality solutions with minimal search costs).
The variable k refers to the limited horizon for optimization, necessary due to the unpre-
dictable dynamic nature of the environment. The variable Ω refers to a reduced alphabet
of information. No agent ever has reliable information about all factors that influence all
agents behavior. To compensate for this, we mask factors where information is not avail-
able from consideration; reducing the alphabet of variables used by the $-function. By
using the kΩ-optimization to find the strategy with the lowest $-function, meta-system
finds a satisficing solution, and sometimes the optimal one. This avoids wasting time
trying to optimize behavior beyond the foreseeable future. It also limits consideration to
those issues where relevant information is available. Thus the kΩ optimization provides
a flexible approach to local and/or global optimization in time or space. Technically this
is done by replacing parts of $-expressions with invisible $-expressions ε, which remove
part of the world from consideration (however, they are not ignored entirely - the cost
of invisible actions is estimated).

5.1 Polymorphic Viruses in $-Calculus

In terms of the $-calculus, infected by polymorphic viruses programs and their envi-
ronemnt are a parallel composition of component programs

( ‖ i (kΩi[t] xi[t])),

where kΩi[t] represents a viral part operating on a healthy program (its host) xi[t] in
time t = 0, 1, 2, .... For healthy programs their viral part is empty (or, more precisely,
the identity function). Each infected component performs the kΩ-optimization looking
for the minimum of the cost function

$(kΩi[t], xi[t]) = $1($2(kΩi[t]), $3(xi[t])),

where $1 is an aggregating cost funtion, $2 is a polymorhic virus cost function capturing
its self-reproduction and damaging other programs payload capabilities, and $3 is the
problem-specific cost funtion capturing the goal of computation of the host program.



Once again from the point of view of the anti-virus software the desirable situation is
when $ = $3, and from the point of view of computer virus the desirable goal if $ = $2.

6 Conclusions and Future Work

This paper outlined three models of polymorphic viruses allowing to capture their self-
reproduction, damaging payload, and their host program environment. These models
have been derived using Evolutionary Turing Machine, random automata networks, and
the $-calculus. Such result seems be very encouraging in the situation, when no models of
polymorphic viruses existed, and their nature is not well understood. This was because
conventional algorithms and Turing Machine do not capture properly self-reproduction
and potential creation of new types of viruses. This was the main reason why von
Neumann had to use a new model of cellular automata instead of Turing Machine, when
he wanted to design his universal constructor. Of course, these results are preliminary
and much more work is needed. The follow up work, including some simulation is under
way [18].
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