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Abstract. This paper considers the distribution of populations generated by multi-
objective evolutionary algorithms. Some algorithms have a tendency to produce multimo-
dal distributions of population while other algorithms produce a compact cluster of solu-
tions. Particular MOEAs have a tendency to one of these distributions. This paper will 
show that one feature of an algorithm defines it – the selection method. If selection is 
based on the evaluation of parents, the algorithm generates a compact population every 
time. When the selection is based on the fitness of the offspring, the algorithm is able to 
generate bimodal distribution of population. Five MOEA algorithms were analyzed: 
VEGA, two types of tournament and two methods proposed by the author (MOEA with 
competitive selection and MOEA with protective selection). The results of the simulation 
confirmed that, depending on the selection method selected, the analyzed algorithms gen-
erate the expected distribution of population. This paper does not assess which algorithm is 
better or worse but merely seeks to explain the reason for the algorithms’ properties. 

1 Introduction 

Since 1985 (Shaffer [6]), evolutionary methods have been used for multi-objective optimization 
problem-solving. The goal of these methods is to find all or a representative group of Pareto 
optimal1 solutions. However, some algorithms do not have Pareto optimality detection imbedded. 
These methods, by Fonseca and Fleming called population-based non-Pareto approaches [4], 
need additional procedures. The evolutionary process generates populations of individuals which 
are monitored by an independent module and Pareto optimal solutions are detected. Pareto opti-
mal solutions could be chosen from the existed populations of individuals only. Therefore the 
evolutionary process should generate diversified populations, able to produce the full spectrum of 
potential solutions. Among other things, this ability depends on the distribution of populations. 
At least two opposite domain-specific problems were observed in this area [4]: 
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1. Speciation2 divides population into separated population groups [6]. In this effect, popula-
tion has multimodal distribution and does not identify compromise solutions. 

2. Premature convergence reduces the diversity of populations to one compact cluster [2], 
[5]. As a result, the population has unimodal distribution. Such a compact population usual 
explores a limited area of search space (local optimum or compromise solutions) and does 
not explore all Pareto optimal solutions. 

 
The Pareto optimality is not implemented into analyzed algorithms and is not being considered in 
this paper. Our interest is in the distribution of populations generated by group of multi-objective 
evolutionary algorithms. Some methods (e.g.  as proposed by Shafer VEGA [6]) have a tendency 
to produce multimodal distribution of population while other algorithms produce unimodal popu-
lations. Particular MOEAs have a tendency to one of these adaptations. Three variants of popula-
tion distribution are being considered (Figure 1.): 

1. Compromise solutions. A population consisting of solutions with intermediate values of 
traits suitably adapted to both objectives. The population of such solutions is characterized 
by unimodal distribution. 

2. Specialized solutions. Solutions are better adapted to one of the objectives, but with de-
creased quality for the other. Population is specialized in one objective. The population of 
such solutions is characterized by unimodal distribution. 

3. Bimodal distribution of solutions. Solutions are divided into two subpopulations. Each 
subpopulation is adapted to a different objective. The population of such solutions is char-
acterized by bimodal distribution. 
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Figure 1.  Distribution of populations. All solutions are presented by points, where the ordinate stands 
for a solution’s fitness and the abscissa stands for the position of a solution in the search space. 

The previous paper [3] focused on conditions that cause an evolutionary process to lead to vary-
ing population distributions in a mosaic environment. A mosaic environment consists of a few 
niches. The fitness of a solution depends both on a solution’s traits (phenotype) and the niche it 
occupies. The evolution in such an environment could be treated as multi-objective problem-
solving. The population is split into subpopulations related to objectives and each solution is 
evaluated by only one objective function (the same scheme as in the population-based non-
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Pareto approaches). It was observed that the distribution of population depends on many factors 
but one of the most important is the selection method. Two schemes were considered: protective 
selection and competitive selection. In the table 1., the distribution of population generated by 
particular selection methods are summarized. 

Table 1.  Possible distribution of population depending on the method of selection. 

kind of selection compromise solutions specialized solutions bimodal distribution  
of solutions 

protective selection possible possible not possible 
competitive selection possible not possible possible 

 
The principal difference between selections is that the protective selection evaluates and selects 
parents, while the competitive selection evaluates and selects offspring that compete for a par-
ticular place in the environment. In a homogenous environment, both methods of selection give 
the same results but in a heterogeneous environment, the offspring may occupy a different niche 
from its parent and in that case, different criteria of evaluation are applied. In the protective selec-
tion, the fitness of an offspring depends on its parent’s fitness. If an offspring is assigned to a 
different objective than the one from which its parents originate, the offspring inherits traits of its 
parents but not its fitness. The inherited traits may not be suitable for the new local conditions. 
When applying competitive selection, we have a different situation. In this case, it is not the pa-
rents, but the offspring that are competing for a specific place in the environment which are 
evaluated. They are evaluated according to the objective attributed to the niche they are compet-
ing for. It may happen that some candidates will inherit traits from parents originating from an-
other niche and they will have statistically less chance of surviving selection. In this method, the 
ability of a solution to survive depends directly on its own (and not its parents) fitness. 
These properties are not only restricted to the algorithms mentioned above. There are other 
methods that are based on the evaluation of parents and later on will be referred to as the protec-
tive type of selection. Similarly, there are methods which are based on the evaluation of offspring 
and these will be referred to as the competitive type of selection. Comparison of a few algorithms 
is shown. These examples show that, depending on the type of selection, the multi-objective 
evolutionary algorithms have defined properties. 
This paper does not assess which algorithm is better or worse and the preferred method is not 
suggested. The sole aim is to explain the reason for the algorithms’ properties which could be 
useful for researchers and engineers. 
This paper is organized as follows: the analyzed optimization algorithms are described in the 
second section, multi-objective problems and simulation results are presented in the third section, 
and finally, conclusions are given in  part four. 

2 Multi-objective optimization evolutionary algorithms 

The general outline is the same for all analyzed algorithms: The population of M solutions char-
acterized by the vector of N traits. The traits are expressed as real numbers. The succeeding gen-
erations are equally numerous and non-overlapping. Each solution of a new generation is an 
offspring of one of the solutions of the previous generation (asexual reproduction). An offspring 
inherits slightly modified parental traits. Traits of  descendant solutions are determined by adding 



to parental traits a random increment with normal distribution N(0, σ). Recombination is not 
applied. The selection of a solution that will occupy a place in the next generation depends on the 
selection scheme. 
Five multi-objective optimization evolutionary algorithms are compared. Three are competitive 
types of selection: 

1. MOEA-CS (Multi-objective optimization evolutionary algorithm with competitive selec-
tion), 

2. MOEA-CTS (Multi-objective optimization evolutionary algorithm with competitive type 
of tournament selection), 

3. VEGA (Vector evaluated genetic algorithm) 

and two are protective types of selection: 

4. MOEA-PS (Multi-objective optimization evolutionary algorithm with protective selec-
tion), 

5. MOEA-PTS (Multi-objective optimization evolutionary algorithm with protective type of 
tournament selection). 

Algorithms are presented below (the pseudo code is used). Population is split into P equally 
numerous subpopulations. Each subpopulation is bound to one particular objective. 
 
01. x[] := new_generation()        // initial generation preparation. 
02. REPEAT 
03.  FOR p := 1 TO P               // P = number of objectives 
                                   // M = population size 
04.   FOR i := 1 TO M/P            // M/P = subpopulation size  
                                   // group of competitors collection 
05.    FOR k := 1 TO K             // K = number of competitors 
06.     parent_nr := sampling(x[]) // probability of sampling = 1/M 
07.     y[k] := x[parent_nr]       // parent copy 
08.     y[k] := modification(y[k]) // competitor modification 
09.     f[k] := quality(p, y[k])   // competitor evaluation (objective nr p) 
10.    END LOOP 
                                   // selection of descendant to the next gen. 
11.    x_next_gen[(p-1)*M/P+i] := roulette_selection(y[],f[]) 
12.   END LOOP 
13.  END LOOP 
 
14.  x[] := x_next_gen[]           // exchange of generations 
15. UNTIL STOP CONDITION 

Algorithm 1. Multi-objective optimization evolutionary algorithm with competitive selection  
(MOEA-CS). 

01. x[] := new_generation()       // initial generation preparation. 
02. REPEAT 
                                  // evaluation of parents 
03.  FOR p := 1 TO P              // P = number of objectives 
04.   FOR i := 1 TO M/P           // M = population size 
05.     f[(p-1)*M/P+i] := quality(p, x[(p-1)*M/P+i])  // evaluation of parent 
06.   END LOOP 
07.  END LOOP 
                                  // selection and modification of descendant 



                                  //                  for the next generation 
08.  FOR i := 1 TO M              // M = population size 
09.   x_next_gen[i] := roulette_selection(x[], f[]) // selection 
10.   x_next_gen[i] := modification(x_next_gen[i])  // descendant modification 
11.  END LOOP 
 
12.  x[] := x_next_gen[]          // exchange of generations 
13. UNTIL STOP CONDITION 

Algorithm 2. Multi-objective optimization evolutionary algorithm with protective selection (MOEA-PS). 

01. x[] := new_generation()         // initial generation preparation. 
02. REPEAT 
03.  FOR p := 1 TO P                // P = number of objectives 
                                    // M = population size  
04.   FOR i := 1 TO M/P             // M/P = subpopulation size 
                                    // group of competitors collection 
05.    FOR k := 1 TO K              // K = number of competitors 
06.     parent_nr := sampling(x[])  // probability of sampling = 1/M 
07.     y[k] := x[parent_nr]        // parent copy 
08.     y[k] := modification(y[k])  // competitor modification 
09.     f[k] := quality(p, y[k])    // competitor evaluation (objective nr p) 
10.    END LOOP 
                                    // selec. of descendant to the next gen. 
11.    x_next_gen[(p-1)*M/P+i] := tournament_selection(y[], f[]) 
12.   END LOOP 
13.  END LOOP 
 
14.  x[] := x_next_gen[]            // exchange of generations 
15. UNTIL STOP CONDITION 

Algorithm 3. Multi-objective optimization evolutionary algorithm with competitive type of tournament 
selection (MOEA-CTS). This algorithm is very similar to MOEA-CS. Only the selection function  

in  line 11 (bold type) is different. 

01. x[] := new_generation()        // initial generation preparation. 
02. REPEAT 
03.  FOR p := 1 TO P               // P = number of objectives 
                                   // M = population size   
04.   FOR i := 1 TO M/P            // M/P = subpopulation size  
                                   // group of competitors collection 
05.    FOR k := 1 TO K             // K = number of competitors 
06.     parent_nr := sampling(x[]) // probability of sampling = 1/M 
07.     y[k] := x[parent_nr]       // parent copy 
08.     f[k] := quality(x[parent_nr].p, y[k]) // competitor evaluation  
                                              //        (parent’s objective) 
09.     y[k] := modification(y[k]) // competitor modification 
10.    END LOOP 
11.    x_next_gen[(p-1)*M/P+i] := tournament_selection(y[],f[]) // selection 
12.   END LOOP 
13.  END LOOP 
 
14.  x[] := x_next_gen[]           // exchange of generations 
15. UNTIL STOP CONDITION 

Algorithm 4. Multi-objective optimization evolutionary algorithm with protective type of tournament 
selection (MOEA-PTS). This algorithm is very similar to MOEA-CTS. Only lines 8 and 9  

(bold type) are different. 



01. x[] := new_generation()       // initial generation preparation. 
02. REPEAT                                 
                                  // Calculations for each objective 
03. FOR p := 1 TO P               // P = number of objectives 
                                  // M = population size 
04.  FOR i := 1 TO M/P            // M/P = subpopulation size 
05.   y[i] := x[(p-1)*(M/P)+i]    // parent copy 
06.   f[i] := quality(p, y[i])    // offspring evaluation (objective nr p) 
07.  END LOOP 
                                          
08.  FOR i := 1 TO M/P            // roulette selection 
09.   x_next_gen[(p-1)*(M/P)+i] := roulette_selection(y[], f[]) 
10.  END LOOP 
11. END LOOP 

 
11. FOR i := 1 TO M               // offspring modification  
12.  x_next_gen [i] := modification(x_next_gen [i]) 
13. END LOOP 
 
14.  x[] := shuffle(x_next_gen[]) // shuffling and exchanging of generations 
15. UNTIL STOP CONDITION 

Algorithm 5. Vector evaluated genetic algorithm (VEGA). In the original VEGA  
the crossover operator was applied as well. 

3 Simulation results 

The simulations were performed for multidimensional multi-objective problems. These are not  
real multi-objective problems but a simple example which show the properties of algorithms. The 
objective functions were constructed with a multidimensional bell-curved Gaussian function: 
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The peaks are separated from each other so there are different adaptive optima (x01<x02). 
The bigger the difference between optima coordinates x01 and x02 the bigger the diversification of 
the objectives. The distance between optima Dx is normalized to the standard deviation of muta-
tion and denoted Dx/σ. 
During research, simulations with different values of parameters (Dx/σ, M, N, σ, K) were per-
formed. Figure 2. shows  representative examples of simulations. All experiments had the same 
scenario. Simulations began with one compact population located in the middle of the search area 
(x01= x02= 0). Very quickly (after dozens of generations) the population achieved a quasi-stable 
distribution which was maintained until the end of the simulation (lasting 10 000 generations).  
Histograms (H) and (J) in Fig. 2. present the results of simulations where the population had 
specialized distribution. The histogram is bimodal because the specialized population was 
switched between the optimal objectives a few times. 
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Figure 2. The distribution of population generated by various MOEAs. Histograms of solutions’ traits 
are presented.  Parameters of the simulations: M=32; N=4; σ =0,05; h1=h2=1; d1=d2=d=5. 
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4 Conclusions 

The results of the simulations confirmed that the distribution of population depends on the type 
of selection algorithm. Those with competitive type of selection (e.g. VEGA, competitive type of 
tournament, MOEA with competitive selection) are able to generate bimodal distribution of 
population and these with protective type of selection (e.g. protective type of tournament, MOEA 
with protective selection) can generate specialized distribution of population (Table 2.). It is 
impossible to achieve specialized distribution of population using algorithms with a competitive 
type of selection and it is impossible to generate bimodal distribution of populations using a 
protective type of selection. 

Table 2.  Possible distribution of population depending on the method of selection. 

MOEA Type of  
selection 

compromise  
solutions 

specialized  
solutions 

bimodal distribution 
of solutions 

competitive selection competitive possible not possible possible 
competitive type of 

tournament 
competitive possible not possible possible 

VEGA competitive possible not possible possible 
protective selection protective possible possible not possible 

protective type of 
tournament 

protective possible possible not possible 

 
Two tournament selections were analyzed. In one criteria problem, both methods generated the 
same results but for the multi-objective problems, the result depended on the small difference in 
the selection scheme.  
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