
Individuals' Genealogy and the Population Diversity

Krzysztof Adamski1,*, Jarosªaw Arabas1
�ukasz Bartnik1, Arkadiusz Chrustowski2
Krzysztof Jamróz1, Rafaª Wardzi«ski3

Warsaw University of Technology
1Institute of Electronic Systems
2Institute of Telecommunications

3Institute of Control and Computation Engineering
ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
∗corresponding author: kadamski@elka.pw.edu.pl

Abstract. In this paper we study the genotype diversity of the base popula-
tion. We provide evidence that the diversity is closely related to the genealogy
of individuals and to the degree of mutation. We give analytical formulas for
the diversity distribution in the space of binary and real vectors. The theoretical
results are supported by numerical experiments.

1 Introduction
In the �eld of evolutionary algorithms (EAs) it is widely believed that the population
diversity is responsible for the robustness of an EA and the ability to locate global
maximum of the �tness function. Some authors suggest that the EA should be stopped
if diversity falls below a certain level. With this paper we attempt to explain diversity
as the e�ect of the genealogy (the history of reproduction and inheritance) and the
mutation.

The idea to directly analyze the genealogy trees was introduced byWalczak [6], though
the idea of observing the history of reproduction and inheritance was raised much earlier.
In [2, 5] it is observed that if only selection is applied (neither mutation nor crossover),
the population becomes uniform (i.e. contains copies of a single element) in a relatively
short time. This e�ect is caused by the fact that the population size is �nite, and the
stronger the selective pressure, the shorter is the time until homogeneity. The number
of generations needed for homogeneity is called the takeover time. Moreover, it has been
empirically observed [1] that the takeover time is correlated with the population diversity.
In this paper we introduce the concept of the closest common ancestor (CCA) and study
the probability distribution of the number of generations when the CCA appears for any
pair of individuals in the current population.

It appears that if we know the number of generations ago when a pair of chromosomes
has its CCA, then we can give a probability distribution that describes the genotype
di�erence and the distance between these chromosomes. Thus it is possible to give a
probability distribution of the distance between arbitrary pair of chromosomes in the



base population, and the population diversity is the expected value of that distribution.
Additionally, the takeover time is the expected value of the number of generations back
to the CCA for a randomly chosen pair of chromosomes from the base population.

The paper is organized in the following way. In Section 2 we make a theoretical
discussion of the relation between the genealogy of individuals and the population di-
versity in arbitrary Banach space. Section 3 presents the theoretical results speci�c for
the binary space. In Section 4 we give a simulation example in the binary space aimed
at illustrating the prediction possibility of the theory-based results. Section 5 concludes
the paper.

2 Genealogy of individuals and the population diversity
Consider a generational evolutionary algorithm with selection and mutation only. Assume
that EA operates in a measurable Banach space (e.g. Rn or in the space of n dimensional
binary vectors {0, 1}n), and the distance between two vectors is denoted by ||x−y|| (e.g.
Euclidean or Hamming distance), where ||a|| denotes the norm of a vector a. Consider
an arbitrary pair of individuals, x and y contained in the same base population Pt.
Assuming that x and y are picked from Pt at random with the uniform distribution, we
conclude that their distance d = ||x−y|| is a random value with an unknown distribution.
The aim of this section is to give formula for the probability distribution Pd(d|Pt). Note
that Pd gives us information about the distribution of individuals from Pt in the search
space, and its expected value can serve as a diversity measure.

Consider the genealogy tree de�ned in the following way. Each node of the tree is
an individual. The tree is directed, and the edge leading from the individual x to the
individual y means that y is the result of mutating x. An example of a genealogy tree
is depicted in 1. Nodes have been organized in a �layered� manner � individuals from
the same base population are group in a column, allowing for easy identi�cation of base
populations in consecutive generations.

P1 P2 P3 P4 P5 P6

Figure 1. Example of a genealogy tree. Nodes correspond to individuals, and a link shows that
an individual is the result of mutating another individual.

We can derive Pd(d|Pt) from the distribution describing the mutation process and the
genealogy tree. Consider a pair of chromosomes x,y ∈ Pt and assume that k generations
before (i.e. in the population Pt−k) there was an individual z who was the common
ancestor of x and y, and that in generations t − k + 1, ..., t − 1 there was no common
ancestor of x and y. Then z is the CCA for x and y. Note that it is possible that
in generations t − k + 1, ..., t − 1 there was at least one individual v with the same
genotype as z, but v is still not a common ancestor for x and y, since we are interested



in the genealogy tree rather than in the similarity in a genotype space. Assume that the
mutation acts as follows

x′ = x + m (1)

where x,x′ are the mutated chromosome and its result, respectively, m is the value of
the random variable describing the mutation process, and �+� is the addition operator
speci�c for the search space (e.g. sum of vectors in Rn or exclusive or in {0, 1}n). Then
x and y di�er from z in sum of k vectors being independently driven from the random
variable describing the mutation process. Denote the mutation distribution by Pm.

According to (1) the distribution of both x − z and y − z is given by the k-fold au-
toconvolution of the mutation distribution. If we assume that Pm is symmetrical, i.e.
Pm(x) = Pm(−x), then the distribution of di�erences d = x− y is 2k-fold autoconvolu-
tion of Pm

P1(d|k) = Pm ∗ ... ∗ Pm︸ ︷︷ ︸
2k

(d) (2)

We have expressed P1 as a conditional distribution to stress its dependence on the value
of k.

The distribution of di�erences P1(d|k) uniquely de�nes the distribution of distances
P2(d|k), where d = ||d||. If we denote Pa(k|Pt) the ancestry distribution � the probabil-
ity distribution that a pair of vectors in Pt comes from the CCA originated k generations
before � then we end up with the formula for probability distribution Pd(d|Pt) of the
distance between pair of points from Pt

Pd(d|Pt) =
t∑

k=1

P2(d|k)Pa(k|Pt) (3)

The actual population diversity in the generation t is the sample of the random variable
given by Pd(d|Pt). Its expected value equals linear combination of expected di�erence
values for each value of k

E[Pd(d|Pt)] =
t∑

k=1

E[P2(d|k)]Pa(k|Pt) (4)

This means that the expected value is in the range between the smallest and the largest
value of E[P2(d|k)].

3 Diversity in binary space
In the binary space chromosomes are binary vectors of the length n. We will assume
that the distance is measured with the Hamming metric which equals the number of bits
by which two vectors di�er. We will also assume that the mutation consists in changing
each bit with equal probability pm. If we consider two vectors with CCA originated
k generations before, then the distance between them will be a random number whose
distribution dependends on k. Let us de�ne this distribution.

Consider binary vectors x,y and the vector z being their CCA located k generations
before. Consider an i-th bit and the number of changes that have been made on that bit



when getting xi from zi and yi from zi. According to (2) we can sum up the number of
changes and compute its probability as

p(l|k) =
(

2k
l

)
pl

m(1− pm)2k−l (5)

where pm is the probability that a bit is changed in one generation (mutation probability),
and l is the sum of the number of chages on the way from zi to xi and from zi to yi. If
the number of changes is odd we get xi 6= yi, and

pn(k) = Prob(xi 6= yi) =
k−1∑

l=0

(
2k

2l + 1

)
p(2l+1)

m (1− pm)(2k−2l−1) (6)

Note that

2pn(k) = [pm + (1− pm)]2k − [pm − (1− pm)]2k (7)

so
pn(k) =

1
2

[
1− (2pm − 1)2k

]
(8)

When vectors of n bits are considered, the distance between them is binomially dis-
tributed. The distribution of the distance d = ||x− y|| between two binary vectors with
the CCA located k generations before is given by

P2(d|k) =
(

n
d

)
[pn(k)]d[1− pn(k)]n−d (9)

Note that the expected value of the distance grows with the number of dimensions n.

4 Genealogy trees in practice
Prediction of the population diversity would be possible if we knew the Pa(k|Pt) dis-
tribution. Unfortunately, when proportionate selection is used, Pa depends directly on
the �tness function values which are unknown in advance before starting the evolution.
Therefore we present the experimental results rather than analytical analysis of the Pa

distribution.
We have performed experiments for binary chromosomes. The experiments were

aimed at investigating the Pa distribution when the reproduction was �tness proportion-
ate. At the same time we were observing the population diversity and tried to compare
the results with the values predicted according to sections 2 and 3.



4.1 Test problem
The problem formulation comes from applying a penalty function to the knapsack

problem. Consider n-dimensional vectors p and w of positive real numbers, and the
positive real scalar W . The �tness function to be maximized equals:

fk(x) =
n∑

i=1

pixi −K max

{
0,

n∑

i=1

wixi −W

}
(10)

where:
K = maxi=1,...,n pi/wi,
x = {0, 1}n,
pi is the pro�t of the item i drawn with uniform distribution from (0, 50),
wi is the weight of the item i drawn with uniform distribution from (0, 50),
W = 1

2

∑n
i=1 wi is the knapsack capacity.

4.2 Empirical results for ancestry histograms
Evolutionary algorithm We performed tests using an evolutionary algorithm with
�tness proportionate nonelitist selection, without crossover. Mutation consists in �ipping
each bit with probability pm.

Approximation of ancestry histograms with gamma-distribution. In the �rst
experiment we analyzed the ancestry histogram of a base population. The histogram for
generation t is obtained by analyzing all chromosome pairs from Pt and by recording
how frequently a pair of chromosomes has its CCA in population Pt−k. We recorded
cumulated ancestry histograms (CAH) obtained by averaging ancestry histograms for
100 successive EA generations. We observed that CAH can be approximated with the
gamma-distribution, and this holds for all �tness functions under consideration.

The probability density function of the gamma-distribution is given by:

PDF (x, k,Θ) = xk−1 e−x/Θ

ΘkΓ(k)
for x > 0 (11)

where:
k > 0 is the shape parameter,
Θ > 0 is the scale parameter.
Note that larger values of Θ result in a �atter shape for the PDF. Mean value of the
gamma-distribution is kΘ, and the variance equals kΘ2.

An example CAH and its approximation with the gamma-distribution (11) are de-
picted in Fig. 2.

Moreover we observed that the parameters of the distribution to approximate CAH
did not change much over generations. To illustrate this e�ect let us study Fig. 3 where
the parameters of the gamma-distribution estimated for CAH are depicted for successive
generations for a single run of an EA. The population size was µ = 50, the �tness was
f1, and the mutation probability was pm = 0.005. The cumulated ancestry histograms
were also only slightly di�erent for di�erent EA independent runs. To illustrate this 25
independent runs of the EA with the same settings were performed, and for each run



the CAH were approximated with gamma-distributions. We recorded the population of
distribution parameter values. Mean value of the parameters were Θ = 9.61, k = 1.80,
and the standard deviations of these values were 1.33 and 0.23. We conclude that the
cumulated ancestry histograms are an fair approximation to the Pa distribution.
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Figure 2. Ancestry histogram and its gamma-distribution approximation

In�uence of population size and mutation range. When considering the gamma-
distribution approximation to CAH we observed that the distribution parameters de-
pended on various factors such as the �tness function, the mutation probability pm and
the population size. This dependence can be explained by the fact that the aforemen-
tioned factors in�uence the distribution of the �tness over chromosomes in the base
population, and this results in various ancestry histograms.

It is well known that smaller populations are more easily dominated. Therefore with
increasing population size the ancestry histograms are getting ��atter�. This e�ect can
be observed even with the constant �tness function. Larger populations means that
chromosomes may have their CCA deeper in the history, that is, they may result from
more mutations and the population diversity is larger. This means that the population
occupies an area of a larger diameter (in the sense of the number of mutations), so the
diameter is also in�uenced by the mutation range. Therefore, the distribution of �tness
values, and in the same time the Pa distribution, depends on the �tness �shape� in the
area occupied by the base population. If the �tness is highly variable within that area, the
probability for reproducing individuals is highly di�erentiated and the Pa distribution
is relatively narrow-shaped. If the �tness is slightly variable (or is constant) the Pa

distribution is ��atter�.
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Figure 3. Parameters of gamma-distribution (single run) for di�erent t [solid line]. Mean value
of data presented as solid line [dashed line].

Ancestry histograms and takeover time. Note that the expected values of the CAH
are the takeover time values. It is reported [2] that the dependence of the takeover time
on the population size can be estimated by o(n log n). In our experiments we observed
(Fig. 4) that the dependence population size can be estimated rather by o(n log2 n).

4.3 Ancestry histogram and population diversity
Typical dynamics of population diversity is depicted in 5. It can be observed that after

a relatively small number of generations the population diversity tends to oscillate around
a certain value. This e�ect can be explained by the fact that the ancestry histograms
tend to stay �stable�. We can verify if population diversity can be predicted by using
genealogy analysis.

As stated in Section 2, when we know the ancestry distribution, it is possible to
estimate the population diversity using the formula (3). In Table 1 we give the diversity
values computed according to formula (3) and the empirical diversity values observed in
150 independent runs of an EA. The latter value was computed for each EA run as the
average diveristy of populations starting from the generation number 500 up to 2000. We
also report the estimation percentage error computed as

e = 100(dt − da)/da (12)
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Figure 4. Expected value and variance of Pa for the function fk and for pm ∈ {0.005, 0.05}.
Regression curve parameters are c1 = 15 and c2 = 50.

where e is the estimation percentage error, dt and da are the theoretical and actual values
of population diversity.

We can observe that the percentage error in most of the test cases is kept at a reason-
able level. For large populations and small mutation probability it grows signi�cantly,
and we explain this e�ect by the fact that we use cumulated ancestry histograms instead
of current histograms.

5 Summary and conclusions
In this paper we give formulas for estimating the population diversity. We give the evi-
dence that the diversity is dependent mainly on the parameter values for the evolutionary
algorithm. Thus it is possible to control the diversity by setting the population size and
the mutation range. We explain the diversity by the genealogy tree and describe the tree
properties with ancestry histograms. We observe that these histograms can be approxi-
mated well with the gamma-distribution, and the distribution parameters may thus be
used to characterize the properties of the genealogy tree.

We expect that this work will give another dimension to the discussion on �what is
the optimum population size for an EA�. We also hope that it is possible to make steps
towards better understanding which optimization problems are well suited for an EA.
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Figure 5. Typical dynamics of the population diversity in subsequent generations.

EA parameters Diversity values
pm µ predicted observed error(%)

0.005 10 2.74 2.92 -6.61
20 4.49 4.37 2.82
50 7.54 6.48 14.02
100 10.39 8.19 21.22
200 13.52 9.83 27.32

0.05 10 17.83 26.66 -49.54
20 24.73 33.23 -34.38
50 33.02 39.60 -19.94
100 38.06 42.81 -12.49
200 41.27 44.94 -8.84

Table 1. Predicted and observed diversity values together with the estimation error for various
µ and pm values.

The answer could be, in the context of the presented results, that between each pair of
local maxima there exists a path with its length no greater that a certain characteristic
value related to the population diversity. This is our meaning of the Eigen's metaphor
of mountain chains in the search space cited in [4]. A somehow �negative� e�ect of our
research is that the diversity will be reduced to a certain level implied by the population
size and the mutation range unless some tricks like niching are used to keep it on a



higher level. In our opinion the presented results support to some extent the EA model
presented in [3] who represented the whole population as a single point in the search
space surrounded by a �balloon� which contains the contents of the population. With
this paper we give a feeling about the diameter of this balloon, however we do not claim
it is symmetrical around a centerpoint.

This paper is an early report from ongoing research. We are working in parallel on the
�oating point representations. We also recognize that the problems with the estimation of
the ancestry histograms, which cannot be avoided for the �tness proportionate selection,
can be easily solved by applying e.g. the tournament or rank based selection. In the
aforementioned selection methods the distribution of the �tness probabilities is either
predetermined by the unique rank values (and thus will not change over generations)
or is �attened by the tournament procedure. We expect to get much better diversity
estimations for those selection schemes and plan to verify that in the near future.
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