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Abstract. In the paper we propose a new model of spatial distribution of nodes
in graphs which can be represented in the Euclidean space. Such graphs ap-
pear in many areas of computer science, for instance wireless networks design,
Traveling Salesman and Vehicle Routing Problems. We show analogies between
scale-free and Euclidean graphs. Although the distribution of node’s degrees in
Euclidean graphs is not scale-free, the spatial distribution of node’s follows the
power law. We analyze distribution of population density in different continents,
propose a model to generate such distributions and provide numerical experiments
concerning its quality. Finally, the impact of our model on different NP-complete
problems in Euclidean graphs is analyzed.

1. Introduction

Complex networks are currently being studied across many fields of science. Many sys-
tems in nature can be described by models of complex networks, which are structures
consisting of nodes or vertices connected by links or edges. There are numerous exam-
ples of such systems: social networks, the internet, food webs, distribution networks,
metabolic and protein networks, and citation networks [4], [3],[17],[15]. Most of these
networks share the following three important features:

• The average shortest path length L is small. In order to connect the two nodes of
the graph, typically only a few edges need to be passed. Similarly, a graph diameter
is small.

• The clustering coefficient C is large. The clustering coefficient C is an average
fraction of pairs of neighbors of a node that are also neighbors to each other.
Suppose the node i has ki edges and they connect this node to ki other nodes. The
clustering coefficient Ci of node is defined as the ratio between the number of edges
Ei that actually exists between those ki nodes and the total possible number:

Ci = Ei/(ki(ki − 1))

If the clustering coefficient is large, two nodes having a common neighbor are far
more likely to be connected to each other than are two nodes picked at random.

• The distributions of degree is scale-free i.e., it behaves as a power law of the form
P (k) ∼ k−γ , where P (k) is the probability that a randomly selected node has
degree k . The degree exponent γ varies from 1.13 for food webs to 2.7 for language
networks [17].



However not all graphs considered in the computer science are scale-free. In the
paper we consider graphs which are represented on the plane. Such graphs are extremely
important in some areas of science for example wireless networks, intelligent transport
systems, etc. Although the distribution of node’s degrees in such graphs is not scale-free
we find that, the spatial distribution of node’s follows the power law. We propose a
model to generate spatial distribution od nodes in such networks and validate the results
by comparing them with real population density. We show analogies between scale-free
graphs and the aforementioned graph parameters and the distribution of nodes in real
Euclidean graphs.

2. Euclidean Graphs with Uniform Distribution

Random graphs, in which we place edges with the same probability between all pairs of
nodes regardless of their spatial distribution, are not suitable for testing many practical
algorithms. For example in wireless networks nodes may be connected by an edge only
if they are not far away in terms of the Euclidean distance. Similarly in the Euclidean
TSP (Traveling Salesman Problem) problem the cost of traversing between nodes may
be equivalent to the Euclidean distance between nodes.

The wireless peer-to-peer network may be modeled by a directed graph G(V, E). V
is the set of vertices denoting stations in the network (|V | = n). As a physical link from
station v to u, we understand that u is within the transmission range of v, and v can
directly transmit messages to u. E is the set of physical links (|E| = e). In general,
a physical link is unidirectional concept. If the ranges of all stations are the same, the
links are bi-directional and G becomes undirected. So called unit disk graphs [8], [13],
[11] are usually used to model such networks. Stations are represented by n randomly
generated, uniformly distributed points in the unit square [0, 1]× [0, 1], and all of them
have the same transmission range r. Edges join points with the distance not larger
than r, and the resulting graph G is undirected. Motivation for considering so restrictive
classes of networks is the hope that one can design more efficient protocols, and heuristics
developed for the restricted cases will be useful in improving the performance of radio
networks.

One of the most important problems in computer science is the Traveling Salesman
Problem. The problem is known to be NP-complete so heuristics methods need to be
used. Heuristic algorithms for TSP may be tested in similar graphs as in wireless net-
works. Nodes, as before, are represented by n randomly generated, uniformly distributed
points in the unit square [0, 1]× [0, 1]. The graph is complete and weight of an edge be-
tween two nodes is equal to distance between those nodes. However the data obtained
by uniform distribution is not realistic.

The need for a good model of realistic distribution of nodes is apparent. Due to
lack of such model, a various number of problem instances related to TSP and various
vehicle routing problems are available on-line in TSPLIB library. The advantages of
these problem instances is that benchmark results are easy accessible. However, the
disadvantages are that this has led to many publications that contribute new techniques,
which only provide an improvement over previous techniques on these instances, without
showing the weak and strong points in relation to the problem class itself.

In [6] disadvantages of performance studies on a fixed set of Euclidean TSP instances
are presented. The optimization algorithm presented there learns the underlying common



structural properties of problem instances and uses it to guide the search. This led to an
overfitting as soon as the algorithm learned from optimal solutions.

In [10] the simple clustering model of TSP is proposed. However all clusters have the
same size and general properties of the model are not analyzed. In [16] a map generator
is introduced to produce layouts of locations in an artificial way while keeping a link with
real routing problem by focusing on a property often observed in real routing problems,
that of clustered locations. The evolutionary algorithms is introduced which generates
data of a given structure, however the algorithm is quite complicated.

All those examples show the need for a good model which allows the generatation of
large graphs with nodes distributed in Euclidean space in a realistic manner.

3. Scale-free Distribution of Nodes

Although uniform distribution of nodes is assumed in most papers, it is not clear whether
such distribution properly model the real word. People usually gather in groups and there
are areas with high population density as well as areas which are sparsely populated.
Thus, real network may not be represented by uniform distribution of nodes. In [9],[5] the
distribution of population in cities is described. It is shown that urban population follows
the power law N(w) ∼ w−γ , where N(w) is the number of cities with the population w.
However the spatial distribution of population density is not considered.

We analyzed the distribution of population density in a given area. We discovered
that the density of population follows the power law. There is a small percent of the
area with extremely high population and at the some time there is a large fraction of the
area with relatively low population density. This idea may be observed in any scale: the
world, country, province, city and finally even inside a building.

The population density data are freely available on-line [1]. The area of continents is
divided into small squares (size of about 20 km2, for example there are 7833700 squares
for Asia). The squares do not have equal size. The data contains for each square its area
and population density. For our analysis we use data from the year 1995.

3.1 Population Density Distribution

We analyze the probability P (d) that a given area has population density d. Two
methods for measuring such distribution exists [5]: (I) direct measurement of probability
density and (II) measurement of the cumulative distribution. Method (I) is performed
by dividing the density scale into ranges and counting the percent of areas with densities
within this range. In method (II) one selects a few density levels and for each level the
area exceeding this population density is calculated. We selected the method (I). For
densities smaller than 100 persons per km2 we use the ranges of 1, and above this density
we use the range of 30 persons per km2.

Fig. 1 contains the probability P (d) measured for different continents. This proba-
bility follows the power-law with exponent γ about -2 for d > 100. For smaller d’s there
is a cut off which courses that probability that area has population density d is smaller
then predicted by the power-law.
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Figure 1. Probability P (d) measured for different continents. Population density is in
persons/km2.

k
Continents Model

Europe North South σ = 0, 01 σ = 0, 01 σ = 0, 01 σ = 0, 01
America America puni = 0 puni = 0, 3 puni = 0, 5 puni = 1

0 1,000 1,000 1,000 1,000 1,000 1,000 1,000
1 0,896 0,944 0,969 1,000 0,634 0,387 0,335
4 0,726 0,773 0,811 0,999 0,563 0,195 0,111
7 0,609 0,517 0,677 0,999 0,550 0,153 0,068
10 0,517 0,491 0,515 0,997 0,541 0,131 0,047
24 0,318 0,289 0,300 0,942 0,470 0,077 0,023

Table 1. The density correlation for real data and some model parameters.

3.2 Correlation of Area Density and Neighborhood

The second parameter we consider is the correlation between the density of area
and average density of its neighborhood. Let Dr(x) be density in square x of size r.
We also consider Dr,k(x) as an average density in squares with distance smaller than
k to square x, where k is a parameter and r is a dimension of a square. Then we
measure the correlation between Dr(x) and Dk(x) for a few values of k. As could be
easily predicted this correlation is very high. This simply means that the neighborhood
of the area having large density probably has a big population density, too. Table 1
presents the correlations obtained for Europe and North America and calculated for the
model presented in the next section. Let us notice the analogies between this correlation
parameter and clustering coefficient in scale free graphs.

4. Node’s Distribution Model

To model the dynamics of population distribution as well as to obtain a good generator
of such distributions we propose the following algorithm. We add nodes in the unit
square [0, 1]× [0, 1]. Each nodes has coordinates (x, y), x ∈ (0, 1), y ∈ (0, 1). The model
has two parameters puniform, σ. We start with one node in the center of the square.



1: V = {(0.5, 0.5)}
2: for i ← 1, n− 1 do
3: if u(0,1) < puniform then
4: add a new point to V with uniform coordinates probability distribution
5: else
6: randomly select an existing point with coordinates (x, y) ∈ V
7: add new point to V with coordinates (x + N(0, σ), y + N(0, σ))
8: end if
9: end for

Figure 2. The node’s coordinates generating algorithm. N(0, σ) denotes random variable with
normal distribution with mean value 0 and variance σ. u(0,1) denotes uniformly distributed
random variable in (0, 1).

The new node is added with probability puniform uniformly in the square. Otherwise
(with probability 1-puniform) an existing node is selected and a new one is added in its
neighborhood defined by normal distribution with mean value 0 and variance σ. Figure
2 summarized the proposed algorithm.

Figure 3. Obtained data for n = 2000 nodes, n0 = 1. Left-top picture puniform=1, right-top
picture puniform = 0.1,σ = 0.06, left-bottom picture puniform = 0.1,σ = 0.03, right-bottom
picture puniform = 0.1,σ = 0.01.

Although it doesn’t look like at first sight, it is in fact a kind of preferential attachment
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Figure 4. Probability P (d) measured for different model parameters. 4 × 106 nodes. We use
400000 squares in computations.

[3]. However, the probability of adding the node does not depends on the node degree.
Instead it depends on the population(node) density in a given area. The area with more
nodes, has bigger probability to be selected to get a new node. Fig. 4 presents P (d) for
a few model parameters: puniform = 1 simply denotes classical uniform distribution of
nodes. As we change puniform from 0 to 1 we move from scale free distribution towards
uniform distribution of nodes. Similar properties are observed in classical scale free
networks as we change from random to scale free graph. Fig. 3 presents examples of
distributions of nodes for different model parameters.

5. The Complexity of TSP

TSP belongs to NP-complete problems. Although NP-complete problems are believed
to require exponential time to solve in the worst case, the typical-case behavior is usually
difficult to characterize. For example, it was discovered [14] that NP-complete problems
can exhibit phase transition phenomena, analogous to those in physical systems, with
the hardest problems occurring at the phase boundary. In TSP, we consider a decision
problem, namely if the path of length d exists. With randomly generated problems there
is often a shape transition between two regions as the control parameter d is varied. In
the constrained region, a very large number of solutions exist and it is relatively easily
to find one. In the tightly constrained region, it is usually comparatively easy to show
that no solution exists. Problems from the phase transition in between are typically hard
since they cannot easily be proved soluble or insoluble. In our work we try to extent this
approach. Instead of the decision problem we consider the optimization one and instead
of path length d we use the model parameters puniform and σ and try to identify the
hardest problems for optimization.

We used the Chained Lin-Kernigham algorithm with the implementation from the
Concorde system [2]. This is a local-search heuristic. We compared the quality of ob-
tained solutions with the lower bound computed by Concorde system. We checked in-
stances with 5000 cities. For a set of model parameters we computed the average solution
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Figure 5. Average difference between Lin-Kerningham solution and lower bound for TSP mea-
sured for different puniform and σ parameters. 5000 cities. Difference between lower bound and
heuristic solution in percents.

for 10 problem instances. Due to the fact that the Chained Lin-Kernigham algorithm is a
stochastic method, for each problem we performed 10 independent runs. It turns out that
local search procedure is very effective in solving the problem of such size. The difference
is always below 1%. Although we were unable to find any phase transition we observed
that the model parameters change the characteristic of the problem. The highest ob-
served difference between the lower bound and heuristic solution was for puniform = 0.1
and σ = 0.01 (Fig. 5) These are the most clustered problems. If we use bigger σ we
obtain distributions which are similar to the uniform distribution od nodes. That’s why
the chart for σ = 0.1 is flat.

6. Coloring of Unit Disk Graphs

In this paper we also consider coloring of the unit disk graphs. To show the impact of our
model on coloring of unit disk graphs we investigated several different coloring problems:

• G(V, E) is a standard unit disk graph. Nodes coordinates are generated according
to our model. Then the nodes with Euclidean distance smaller than r are connected.

• G2 the square of unit disk graph i.e, the graph is build from G by adding edges
connecting nodes at graph distance of 2.

• G2 −G is the graph G2 without the edges of graph G

Let us notice that graphs G2 are used to model wireless networks with primary and
secondary conflicts. Graphs G2 − G are used to model networks with secondary con-
flicts only [11] [13]. Optimal coloring of these graphs determines the network resources
needed for the conflict-free transmission (TDMA cycles length, CDMA codes or FDMA
frequencies). We investigated four types of graph coloring algorithms:

• Random greedy coloring with random ordering of vertices.
• LF greedy coloring with ordering of vertices according to their degree.
• DSATUR greedy coloring with dynamic vertices ordering according to saturation

degree [7].
• branch and bound algorithm [7]. We use implementation described in [12].
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Figure 6. The number of colors for G, G2 and G2 −G for different graph coloring algorithms
and model parameters.

We checked networks with 250 nodes, r = 0.25, σ = 0.01. Parameter puniform varies
from 0.1 to 1 (i.e. from scale free distribution of nodes to standard uniform distribution).
Fig. 6 presents the obtained results. Unfortunately not all graphs may be solved in
reasonable time using branch and bound algorithm. Thus we stopped the algorithm
after 109 backtracks and the best obtained result so far was used.

As we may observe the hardest problems arise in the least realistic case of puniform =
1. For puniform = 1, G and G2 give almost 5 times smaller numbers of colors (network
resources) for the uniform case than in more realistic case of puniform = 0.1. On the
other hand G2 − G graphs give larger number of colors for the uniform case, however
the difference between the best heuristic (fast solution) and branch and bound algorithm
became the largest (even 30 %). This kind of graphs seems to be the hardest for coloring.

7. Summary

In the paper we analyzed the distribution of population density in Euclidean graphs. We
showed that although these graphs are not scale-free, if we analyze the node’s degrees,
the spatial distribution of nodes density follows the power law distribution. We presented
a simple and efficient method of generating such distributions. Our model can be used
in many areas of computer science dealing with Euclidean graphs. We analyzed the
impact of such model on two different problems TSP and coloring of conflict graphs
in wireless networks. We showed that these graphs behaves differently than standard
unit disk graphs with uniform distribution. The TSP problem is the most difficult if
many clusters appear. On the other hand coloring of conflicts graphs is harder with
the uniform distributed nodes. We also observed huge difference between the number of
colors (network resources) needed in scale free and uniform distribution of nodes.

Future work is to find similar properties for other problems, for example minimal
connected dominating set used in wireless networks routing. The known bounds for
chromatic number of unit disk graphs may also be extended. Let us notice that in
this work we consider only static graphs. In wireless networks nodes may move. Good
mobility models and distributed algorithms based on our model of distribution of nodes
are also possible.
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