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1 Introduction

The image reconstruction problem arises in many applications. Each of them can be specific
due to various mechanisms of distortion and different nature of the images. For instance,
distortions of ultrasound images are related to a conical shape of the ultrasound ray, reflec-
tions, etc., while for vision images the distortions are caused by various imperfections of the
vision systems. The presented method of image reconstruction can be applied to distortions
described by a two-dimensional nonlinear ARMA model. Two related images: the original
image and the distorted image, are represented here by random fields. For the image re-
construction we apply a methodology of simulated annealing which consists of creating a
Markov chain of images convergent to the maximum a posteriori estimator which represents
the reconstructed image.

The restoration problem is stated in Section 2. The basic algorithm is described in Sec-
tions 3 and 4, and the examples of image reconstruction for typical distortions are presented
in Section 6.

2 Image Modeling and Maximum Aposteriori Estima-
tion

The description of the image used in this paper is borrowed from [1]. We assume that each
image z consists of a set of pixels xs,s € S arranged in a finite rectangular lattice

S={(i,5): 1<i<M,1<j <N} (1)

Each pixel can take only finite number of values, z, € &y, the finiteness assumption being
well justified for digital images. The images can be thus thought as points in X = XM x A.
Because of the random model of distortions, pixels may be regarded as random variables
X,,s € S, taking values in Xy hence then the image X = X;,s € S is a multidimensional
random variable with the state space X = XM x XN. A strictly positive distribution I7
defined on the set of all possible images X is called the random field. Each random image X
is thus assigned a positive probability II which is determined by its local characteristics i.e.
by the collection of conditional probabilities of the form:
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HNXs=z: | {X,=x,, r€S, r#£3s}), s€S (2)

According to Hammersly-Clifford Theorem [1], every random field II can by written in the
(Gibbs form, namely

exp(—H(z))
1) = & e H ) o
where the energy function H is strictly positive for each z € X. The denominator of (3) is
called the partition function. The Gibbs form for fields with only local dependencies between
pixels (i.e. the dependencies bounded to small neighborhoods) is a starting point for various
image processing algorithms. For each s € S, a set 0(s) is called the neighborhood of s if

s ¢ 0(s) (4)
sedt) & teds) (5)

The neighborhood of s completed with s is denoted by 9(s) = d(s) U {s}. The collection 0
of neighborhoods 9(s) for each s € S is called the neighborhood system, namely

8 = {9(s),s € S} (6)

One can express the local dependencies between points through the conditional probabilities
of the form (2) i.e.

H(X; =2y | { X =80, FE S FF£ 8} =T Xs=2|{ X =8, 7EO03E)}] €S (7)

We use the Gibbs field on the local neighborhood system as the model of dependencies
between the pixels. Properties of the Gibbs formula are exploited also to build the restoration
algorithm. The energy function (3) is more convenient and natural mechanism for embodying
the picture attributes than the local characteristics (2). Let X¢ denotes the set of images
which maximize IT (or minimize H). This set can be thought as a prior knowledge about the
processed images. This prior can be embedded in I before the restoration. The restoration
procedure should also incorporate the observation of the distorted image y. In the approach
described below we look for the maximum a posteriori (MAP) estimator of = defined as

Tmap = argmax (x| y) (8)

Search for the images which maximize II(z | y) is equivalent to looking for the images which
minimize the aposteriori energy function H(z |y).

3 Simulated Annealing Algorithm

The restoration process can be considered as a recursive search for an image z € X related
to the lowest energy H. The use of the exhaustive search in this goal is computationally
prohibitive because of the large dimension of X, many local minima, and flatness of the
energy function. The partition function in (3) depends upon all possible images from X
hence the direct usage of (3) is practically impossible.
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On the other hand, one can easily compute the local characteristics (7) using the Gibbs
expression. This property is used in the simulated annealing algorithm which consists of
building a Markov chain of images Z*, k = 1,. .., co whose distributions I'; converge to the
Gibbs distribution. Such a chain of images can be defined in various ways [1]. The main idea
of Metropolis Algorithm used here in experiments is as follows:

The image z(k + 1) is obtained by a random update of a pirel x (k) chosen randomly
from the image z(k). If H(z(k + 1)) < H(xz(k)) then z(k + 1) is accepted, otherwise it is
accepted with probability exp(H (z(k)) — H(z(k +1)).

The subsequent pictures differ then only by a single pixel. The energy of consecutive
images can locally increase to protect against settling at the local minima of H. To make
the chain converge to the global minimum of H(z) one introduces a Gibbs field equipped
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with a parameter T called the temperature or with a parameter 8 = l/T called the wnverse

temperature can be introduced by & modification of (3) to

exp(—0H(z))

Iz) = g
(%) = 5 e exp(—BH(2) Y
Suppose that the inverse temperature increases according to the basic annealing schedule
given by
8(n) < ——In(n) (10)
n n
~ cA(n) "

where n is the iteration number (during one iteration all pixels should be updated), A(n) is
the biggest energy fluctuation during iteration n — 1, and ¢ is a parameter. One can prove
[1], [4] that the limit distribution of such defined chain is of the form

1
Filz) = lima I°(z) = {WT zeM
0 z¢M
where M is the set of global minima of H. Unfortunately, the basic annealing schedule makes
the annealing process quite slow. We address this problem in Sec. 6.

4 Extended Field and Prior Constraints

We assume that the images have the following property:
The whole image can be divided into subsets of pizels which have “similar” values.

To express this prior in the energy terms one may introduce the family of edge elements. The
edge elements surround each pixel (Fig. 1) and can take values 0 or 1 which correspond to
the absence or the presence of the edge between the appropriate pixels. The set of edges for a
single image can be thought as a vector b from the space of all possible picture edges. Similarly
as for pixels, the edge elements are described as random variables B, taking values in {0, 1},
and the whole edge is described by the multidimensional random variable B. To treat the
pixels and the edges uniformly, one may introduce an eztended image x = {z;,s € S} which
consists of both the pixels

T, s€5={(,7):1=21,7=24,1<i<M, 1<j< N} (11)

and the edge elements

by=zs, sER=5-S5 (12)
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One may consider a field over the set of all possible extended images, called later the extended
field. Let us consider the neighborhood system for the extended field. The neighborhood
system O for pixels is given by:

d(s) ={r:0<d(s,r) < 2v2}

where d(s,t) denotes the distance between pixels s and t. Let the set J, be the neighborhood
system for edge elements, namely

Figure 1: The extended field built from pixels (circles) and edge elements
(squares). Dashed circles denote the neighborhood of pixel s;. Dashed
squares denote neighborhoods of the edge elements rq, ro, r3

85(b) = {a: 0 < d(b,a) <2}

where a, b denote edge elements (see Fig. 1). The energy function of the extended field
describes the “degree of membership” of the image to the class X¢

=2 2 (@ —2) (1= b)) (13)

5 t€d(s)

where by, 4 is equal 1 if there is an edge element between s and t and is equal to 0 otherwise.
The smaller values of the energy function the better is the fulfillment of the prior assumptions.
As in the case of pixels, one can consider specific prior constraints to shape the edges properly.
Those constraints may vary during the restoration, for instance in the early stage of the
annealing the lack of edge continuity is natural but later the stress on that requirement can
be increased. This leads to a nonstationary energy function. Let ||0(r)|| be equal to the
number of nonzero edge elements in the neighborhood of r, i.e.
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106(r)l = D b

t€8y(r)

We assume that an active edge element which has less than 2 neighbors which have value
1 is of small probability. On the other hand, an edge element having too many active edge
neighbors would lead to many crossing lines. Thus we do not “penalize” only those active
elements which have exactly two active edge neighbors. Let H; denote a term of the energy
function describing the above dependencies i.e. for b, =1

0 if ||G(r)]| =2

~v1 otherwise u4)

Hy(b,) :{

where ~; is a constant. Using the notation
5 = {1 if [|Gp(r)|| = 2 (15)
0 otherwise

one can express H; as

Hi(b;) = n(1-4) (16)

We put additional stress on the creation of closed lines by penalizing inactive edge elements
having two active neighbors i.e. for b, = 0

Hy(b,) = {vz if [|9y(r)|| = 2

0 otherwise

= 72 57- (17)

where 7, is a constant. The edges energy varies during the restoration i.e. v; = v1(n) i
2 = va(n), where n is the iteration number. The total energy of extended field is the sum
of terms (13), (16) and (17), namely

=08 > (zs—24)* (1 = bpery) + D (m(n)(1 = 6:)br + 72(n)é,(1 —b,))  (18)

5,t€0(s) réB

where 3 is a parameter and n is the iteration number.

5 Degraded Image

The restoration algorithms exploits the knowledge about the possible nature of distortions.
This is often done by choosing a typical distortion structure and estimating its parameters
on the base of y € Y, x € X or y € Y [6]. We consider two typical distortions: the first is
random and is called the noise, and the second is deterministic and is called the blur [1]. We
assume that both of them can be described by a function of “local” domain

(@(9(s)),ns) (19)

[1]

Ys =
where

e y,, s €S and z,, s € S are pixels of the degraded and the original images, resp.,
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e U is the blurring function whose domain z is restricted to the neighborhood d(s) of s.

o The field n represents the random distortions with moments y and o?. Random vari-
ables ny, s € S are 1.1.d. and are independent from the field X,

e Function = is invertible with respect to n, and the inverse n, = Z~(y,, ¥(9(s))) is
smooth.

The two-dimensional nonlinear ARMA transformation of the image satisfies the above con-
ditions and is used as the basic model of image distortions. As it is known from Geman
and Geman Theorem ([4]), the aposteriori energy H(z,b | y) is related to the prior energy
H(z,b) by

—In

H(z,b|y) = H(z,b)+ % dys

seS

— 5 Yy, ¥(D"(s _
(’M (ve, 2(T()))] 5_::@5,@(@(5)))) -

In the case of additive noise n the last factor in (20) vanishes. The minimization of (20) leads
to the MAP estimator of the original image given the observation y.

6 Acceleration Methods

The classical simulated annealing described in Section 3 converges to the global minimum
of energy but is quite slow. There are several ways to speed up the annealing which lead to
suboptimal solutions. Fast cooling is the most popular one. The typical fast cooling schedules
can be found in [1] and [2]. The second way is the parallel processing, which consists of
updating the set of pixels or even the whole image at one time instant. The chain of images
obtained in this way has its limit distribution but it may substantially differ from the Gibbs
distribution. Parallel algorithms are difficult in theoretical analysis but the development of
parallel computers stimulates the attention paid to these problems [1].

In the experiments described below we assured a balance between the parallel and the
serial processing by gradual switching from parallel to serial processing. Early in the recon-
struction process the whole image is processed parallelly, then the image is split into four
subsets. The subsets are processed serially but its elements are processed parallelly. The split
procedure is repeated and eventually all pixels are processed serially.

One can also extract from the whole image the sets of “interesting” pixels. The sets which
do not fulfill the assumed criteria, for instance do not contain the edge elements, can thus
be excluded from subsequent processing.

In the experiments described below we use all the acceleration methods described above.
At one instant the set of sites P C (.5, R) was updated parallelly. Early in the reconstruction
process the set P contained all sites i.e. the whole image was processed at one instant.
After a few iterations, P was split into four subsets, and then each new set was processed
independently. That rule was applied many times and at the end P contained only one site.
After each split, a verification of the new set was performed. The set which did not fulfill the
assumed criteria, namely it did not contain the edge elements, was excluded from subsequent
processing. In the case of simple pictures, this policy results in decreasing the amount of sites
taken into account during the reconstruction. The usage of the criteria described above results
in the processing of a set containing the pixels placed in the neighborhood of edge elements.
When the processed area was small enough, we used the extended constraints connected
with the shape of the edges.
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Figure 2 shows the results of the restoration of a simple image of dimension 32 x 32 pixels
and 16 levels of grayness. We performed in each case three hundred iterations which took
about 20 sec. on a PC computer (P133, 32 Mb RAM). In the first experiment, the original
image was corrupted by an additive noise of 5 levels of grayness. In the second experiment,
the image was blurred and than corrupted by an additive noise. A simple linear blurring
mask was used. The general rule of Eq. (19) was specified to

1 1
Ya = 5%q + Ezrea(q)mr + 7

7 Conclusions

The experiments indicate usefulness of the parallel-serial processing and call for further
theoretical analysis. In particular, it seems prospective to use a space-scale transformation,
for instance the wavelet transform. The scale domain is useful for both building the prior
constraints and speeding up the algorithms. Some interesting ideas in this direction can be

found in [7] and [8].
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Figure 2: Results of experiments. Upper row: the original version is of the
image. Middle row, from the left: the image corrupted by additive noise,
the restored version and the edge elements obtained during restoraticn.
Lower row, from the left: the image corrupted by noise and blur, the
restored version and the edge elements obtained during restoration.



