Self-programming of Algorithms

Piotr Wasiewicz

Institute of Electronic Fundamentals, Warsaw University of Technology
Nowowiejska 15/19, 00-665 Warsaw, Poland
E-mail: pwas@ipe.pw.cdu.pl
phone: (04822)-660-5319, fax: (04822)-252300

Abstract
In this paper self-programming of algorithms is considered. Genetic Algorithms are
developed under control of Genetic Programming. It is approved that this methodology leads to
finding the best structure of optimization algorithm, which searches the global optimum in
multidimensional functions. The proposed approach has been implemented in C++ on a Pentium
90. Many experiments have been conducted. Some of them are presented in this paper. The
results show that this new method allows to find better structures of Genetic Algorithms than

standard ones or even those of Evolution Strategies.

Keywords: Genetic Programming, Genetic Algorithm, Global Optimization

1. Initial Statements

Genetic Programming (GP) [1] has been recently developed as one of Evolutionary Algorithms. Their earlier
implementations are called: Genetic Algorithms (GA) and Evolution Strategies (ES). These efficient heuristics are
based on evolutionary methods derived from Nature e.g. DNA genetic chromosomes, theory of evolution. Their
standard structures are well known. Their search imitate Darwinian strife for survival. They start with randomly
generated initial population. Each individual of this set represents a possible solution to the problem. Then, while
terminate condition is not true, the following cycle is performed: number of generation ++; select Population(t) from
Population(t-1); recombine Population(t), using crossover and mutation operators; evaluate Population(t). Terminate
condition means that solution is good enough or there is no better results of computation for a period of time or a
maximum number of cycles (epochs, generations) is reached.

GP is a methodology to solve problems by genetically breeding populations of computer programs. For a
particular problem sets of functions and terminals are to be created. An initial population of LISP-like expressions is a
collection of random tree-like compositions of fundamental functions and terminals. Each expression called also a
program is evaluated against the problem. Genetic operators of selection and crossover are applied to create new
populations of programs. Evolutionary process is continued until either a solution is found or a maximum number of
generations is reached.

GAs [2] belong to techniques that can be successfully applied to NP-hard optimization problems. Generally,
GAs are good at optimizing functions with many local and one global optima. It is assumed that GAs search for the
global optimum [3] of such functions with cube constrains (1 - a left constrain, r - a right constrain).

This problem can be described as

min(f(X))
X=()C1’X2""’XN)
LExiSroolnSXuSry

In the above notations each coordinate of a point is restricted to a given interval. A point as a sequence of these
variables from one to N is binary coded and called ,,a chromosome” e.g. there is a point coordinate x within an
interval /I,] and this interval is transformed into a machine word interval /0, 2"N] and a new binary representation ¢
of x is received with a value x*2°N/(I-r). Each coded variable has A/ genes, where M is a length of a machine word. A
single gene can take values 1 or 0. After this operation each variable is Gray coded. In this way feasible points in the
search space are transformed into such binary strings. Here a value of the given function in a given point is a fitness
value of that point (individual, chromosome).

In the process of evolution, a number of cycles, standard genenc operators such as mutation, crossover are applied.
The GA finds the individual with the best feasible solution (the value of a function near global optimum) located in the
defined space.

ESs were first mentioned in 1964 [5]. Then, the idea to imitate principles of organic evolution was introduced
in the field of experimental parameter optimization in Germany. The applications managed to deal with

294 Piotr Wasiewicz

hydrodynamical problems like shape optimization of a bent pipe, with control problems like the optimization of a PID
regulator within a highly nonlinear system and with numerical optimization problems. ES are similar to GA, but have
different types of selection and do not use binary coding of individuals (points) in population. They operate in a
continuous space of point coordinates[6].

In this paper, a technique based on GP controlling structures of GAs is introduced. It is difficult to find the best
receipt for constructing GAs, since there are many sequences of genetic operators. A way of optimizing structures of
GAs with help of GP to search quickly for global optima is presented. Efficiency comparison of developed algorithms
with known methods is provided.

2. Genetic Programming Approach

During execution of GA it is important which genetic operations (e.g. crossover, mutation e.t.c.) are first
performed. With the help of GP, trees made of genetic operations are created. Thus, these tree-like structures describe
an execution way of GA during one generation (epoch). After each GA epoch the best (the nearest to global optimum)
chromosome is remembered. After a given number of GA epochs the best of all these chromosomes is chosen. A value
of the given function in a point obtained from the chosen decoded chromosom is a fitness value of this used earlier
tree-like GA. Genetic operators of GP e.g. selection and crossover create new populations of algorithms in order to
find the most appropriate GA.. The evolutionary process of GP is continued until terminate condition is true. After this
the best (for searching global optimum) solution - structure of GA is showed.

A set F of independent operations on population and one terminal, which is just a probability of the particular
operation are developed. The terminal set is T = £}. The function set is following F =
{SEL, SUS, SEI, SET, SPT, BST, MUT, MT1, MT2, CRS, DCR, PCR, SCR, UCR, INV, +, -, % /, =, <L
The functions have the following meaning:
(SEL Xx) -- proportional selection, the method of ,,the roulette wheel”,
(SUS x) -- stochastic selection with sample probing[2],a value of chromosom fitness / an average of fitnesses aims to
a offspring number.
(SEI x) -- sclection: in the next population exists only copies of the best individual from the previous population,
(SET x) -- tournament selection: from two at random chosen chromosomes the best wins,
(SPT x) -- tournament selection with probability: from two at random chosen chromosomes the best wins with given
probability, .
(BST x) -- (I - x) best strings of population is remembered and will be copied after all operations-arguments of BST
execution, '
(MUT x) -- mutation with probability x/100,
(MT1 x) -- mutation with probability x/10,
(MT2 x) -- mutation with probability x,
(CRS x) -- crossover with probability x,
(DCR x) -- double crossover with probability x,
(PCR x) --fivefold crossover with probability x,
(SCR x) -- ,,sweep” crossover with probability x [2],
(UCR Xx) -- ,uniform” crossover with probability x,
(INV x) -- inversion of bits between two points with probability x,
(+ x) --addition to probability a predefined constant st/ : x + st1,
(- x) --subtraction from probability a predefined constant st/ : x - stl,
(* x) -- multiplication of probability by a predefined constant st : x *st,
(/ x) --division of probability by a predefined constant st : x /st
(= (CRS x) (MUT x)) -- predefined sequence of two GAs operators executed on the whole population, ¢.g. mutation is
executed first, crossover - second,
(< (CRS x) (MUT x)) -- predefined sequence of two GAs operators executed on the divided population, e.g. on the first
half of the population mutation is executed, on the second half of the population crossover is executed.

As an example consider a tree (= (CRS (MUT (- x))) (< (MT1x)(UCR (/x)))) . As is scen operators of a typical
tree are executed from right to left. Probability x comes from right operation to left operation.

It can be written in a file form as:

=cCRScMUTc-cxo0000n<cMTlcxoonUCRc/cx000000

Self-programming of algorithms 295

Fig. 1. A structure of
the program In Fig. I a physical structure of this tree is provided. Here “c”
means “child” (a first argument of a genetic operator of GP), “n”
means “next” (a second argument of a genetic operator of GP)

and “o” - NULL (without an argument)[4].

3.Results of experiments and discussions

:

3]

:
g J E

constant st is equal to 2. Predefined constant st/ is equal to 0.05.
At the beginning x is equal to 0.9. In the case of calculated
probability greater than 1 or less than 0 this probability will be
again equal 0.9. Five test functions were defined in the following way:

UCR E:) During many experiments using this new methodology
(described above) arrays of optimization results with different
" - ol structures of GAs were provided. Comparisons with a program
- L < L = using evolution strategies by Karsten Trint and Uwe Utecht from
Berlin and with a Controlled Random Search method
— j) X z> implemented at TUW Warsaw were done. All experiments have
o been implemented in C++ in a DOS enviroment on the Pentium
- —~ - 90 computer. Descriptions of test functions, GA and GP

= W :
parameters are necessary to perform computation. There were
X E:) X E> values of the algorithm parameters selected as follows. Predefined

o
o

1. Rosenbrock function (10 dimensions) 2. Shubert function (2 dimensions)
RosenbrockV .
- , " Shubert
= — g2 - 5 5
f(X) ;[100.(1:1”' x,-) +(1 x,)]f(x)=zi'cus{(i+l)'_x1 +i]'zi'cos[(i+l)'x2+i]
- FS| =1
x={11,11...) ~10< x,£10

f[:;] _ i=12

Shubert function has 760 local minima, among them 18 global f=

3. Goldstein-Price function (2 dimensions)
F(x)= [1 +x, +x, + 1)2(19 —14x, + 3xZ —14x, + 6x,%, + 3x§)]
-[30 +(2x, —3x2)2(18 —32x, +12x7 + 48x, — 36x,%, + 77x 22)]

Fuin(0—1) =3
—2<£x,£32,

4. Rastrigin function (20 dimensions) 5. Wood function (4 dimensions)
Wood

F(X)=100(x, —x2) +(1-x,)" +90(x, - x3) +
H1-x,)’ +10.1((x2 ~1)" +(x, - 1)2>+19.8(x2 ~1)(x, - 1)

fmin (l’l’Ll) = Oa
-3<x, <3,

Rastrigin

f(X)=nd+ i(xf — Acos(azx,.))

i=1
n=20,4=10,0 = 27,~512 < x, < 512
£(0,0,0,..,0)=0

2727272

296 Piotr Wasiewicz

Table 1. The most efficient GA structures found for given functions

No | Thebest AG | The best algorithms found for a given function.
for the Size of GP population equal to 80. Number of GP epochs - 5. Size of GA population - 20.
function: Number of GA epochs - 40. Step scale of fitness values for selections SEL and SUS.
1 | Rosenbrock | ((MT1 (SEI (SEI (CRS (BST (DCR (MT1 (SEI (SEI (MT1 (SEI (SEI (SEI
(MT1 (SEI (SEI(DCR (SEI(/x))))))))))))))))))))
2 | Rosenbrock | ((SEI(MUT (SEI (MUT (MUT (SEI (MUT (MUT (SEI (MUT (SEI (SET
(SEI (MUT (SEI (MUT (BSTx))))))))))))))))))
3 | Shubert ((* (UCR (SEI(MUT (CRSx))))))
4 | Shubert ((SEI(CRS(INV(*x)))))
5 | Gold.-Price | ((SEI(INV(SEIx))))
6 | Gold.-Price | ((SEI (MUT (INV (< (PCR (PCR (< (SPT (SPT (SET (SEI(UCR(MT1x))))))
(BST (SEI (INV (- (-(UCRx))))))))) (SEL (DCR (SCR (INV (SUS x)))M)))
7 | Rastrigin ((SEI(MUTx)))
8 | Rastrigin ((PCR (PCR (- (MUT (SEI (MUT (SEL (SUS (-x))))))))))
9 | Wood ((BST (+ (MT1 (= (INV (MT1 (/ (SEI(SEIx))))) (MUT (SCR (* (CRS (SEI
(+ (SEI (INV (MUT (SEIx)))))))))))))))
10 | Wood ((DCR (CRS (* (SUS (MT1 (UCR (SCR (SEL (= (UCR (SCR (SEL (= (SEIx)
(BSTx)))))(-%x))))))))I))
11 | Wood ((UCR (MT1 (SCR (DCR(SEI(CRS(=xx))))))))
Table 2. The array of five optimization trials for each given function and comparison of optimization
methods.
No of trial | 1 | 2 I | 4 [5
The function of Rosenbrock 10
AG -8 (20;300) 0.561645 2.22413 0.0005542 0.195918 0.99661
Cost 12060 12060 11980 11860 12020
ES (10;2000) 9.32¢-23 3.04e-10 9.717¢-06 3.986579 5.994e-23
Cost 20000 19970 20010 20010 20000
ICRSP 4.86 2.79 3.32 329 3.21
Cost 24357 24834 24791 25618 23903
The function of Shubert
IAG -2 (20;300) -186.731 -186.731 -186.731 -186.731 -186.731
Cost 3287 4981 21437 4134 4860
ES (100;1000) -186.71 -186.3883 -186.6387 -186.5988 -186.48449
Cost 49200 4300 33600 94500 42000
ICRSP -186.7179 -186.1817 -186.73 -186.6319 -186.73
Cost 693 617 1173 656 851
The function of Rastrigin
AG -2 (20;300) 9.78499 16.8861 15.5692 8.63879 18.231
Cost 35352 33295 18775 36320 24704
ES (20;1000) 70.64175 90.54099 44.77309 102.4803 81.58623
Cost 15920 16860 17080 14920 16500
CRSP 5.125384 5.13
Cost 1576186 1023764 .
The function of Goldstein-Price
IAG-9 (20;300) 3 3 3 3 3
Cost 16978 9231 16978 15087 13135
ES (20,1000) 3 3 3 3 3.000037
Cost 19960 20000 19360 18200 19580
CRSP 3 3 3 3 3
Cost 819 829 599 771 734
The function of Wood
AG-11 (20:300)(0.0208407 0.18451 0.204003 1.37041 0.479571
Cost 3576 10394 ' 4510 8184 6722
ES (20;1000) 4,275195¢-12 1.732263¢-11 2.235166e-11 3.482232¢-09 1.115939¢-13
Cost 19900 19460 19880 20000 19720
ICRSP le-6 8e-7 le-6 le-6 le-6
Cost 3515 3827 3724 3542 3290

Self-programming of algorithms 297

The most efficient (only for this computation) GA structures for each given function have been automaticly
generated with the help of GP. The results are summarized in Table 1 ¢.g. atreeno 3 : ((* (UCR (SEI (MUT (CRS
x)))))) can be easily translated into a GA structure. First, probability is assigned to 0.9. Second operation CRS is
executed on the whole population with probability 0.9. Third operation MUT is executed on the whole population with
probability 0.009. Fourth operation SEI is executed on the whole population with probability 0.9. Now population
consists of the same copies of the best individual from previous population according to this genetic operation SEL
Fifth operation UCR is executed on the whole population with probability 0.9. At last after an operation ,*”
probability (greater than 1) is again assigned to 0.9. As is seen these structures are different from each other.
Similarities appear rarely and emerge rather from using the same genetic functions.

Each GA structure from Table 1 has been used to optimize each test function. The most appropriate algorithm
is chosen for each given function and comparisons with ES and Controlled Random Search Procedure are provided in
Table 2. The last method was invented by Price[3] and combines the random-search and mode-secking (attached with
the statistically estimated density function) algorithm into a single, continuous process. In this table the following
notations are used. AG-2 (20;300) means the best AG no 2 with population of 20 points and 300 epochs. ES (10;2000)
means Evolution Strategie ES-(1,10), which lasts 2000 epochs. CRSP means the Controlled Random Search method.
Cost is equal to a number of evaluations of the function f(x).

As is seen numbers of chosen GA structures in Table 2 are often different from these ones in Table 1. This
means some algorithms found during optimization of one function have better performance with another function.
There is an explanation: during optimization of sophisticated functions with many local and one global optima
generated algorithms are often more robust and are good at searching a global optimum for many other functions. GA
structure no 2 found with a Rosenbrock function is the best (among GAs from Table 1) with Rastrigin and Shubert
functions (the most sophisticated). For the Rosenbrock function with ten dimensions the better method is AGno 8
attached to the Rastrigin function which has 20 dimensions.

During comparison with other methods it has been observed that CRSP manage to find a global optimum of
less complex functions e.g. Goldstein-Price, Wood or even Shubert functions. ES don’t also find a global optimum of
more complex multidimensional functions or these ones with many optima e.g. during searching optima of Shubert
function ES had 5 times more points (individuals) in its population and over 3 times more epochs than GA and in
spite of this it failed many times.

4, Conclusions

In this paper results of many experiments with GP improving GAs, which are applied to search a global
optimum, have been presented. As follows from our considerations GP tries to choose the best sequence of genetic
operators in tree forms. Now GA is not attached to only one standard scheme.

From the comparison of three methods (Table 2.) you can sce that generated GAs are better than standard GAs
and other procedures in optimizing complex multidimensional functions with many local and one global optima e.g.
Shubert and Rastrigin functions.

Futher improvements in this field are expected. It was shown that only by changing the structure of GA it is
possible to obtain better algorithms. Thus, this fact proves usefulness of using GP, even in this case.

5. Acknowlegdements

This work was supported by the Polish State Committee for Scientific Research under Grant 8T11C 04611.
The simulated experiments have been conducted with use of an improved by an author package: Genetic
Programming in C++ v. 0.40 written by A P. Fraser, University of Salford.

6.References

[1]. J.R. Koza: Genetic Programming, MIT Press 1992.
[2]. D.E. Goldberg: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, MA, 1989.
[3]. A. Torn, A. Zilinskas: Global Optimization, Springer Verlag Berlin, 1989.
[4]. A. P. Fraser: An Introduction to Genetic Programming in C++ (Version 0.40), fip.io.com.
[5]. 1. Rechenberg: Evolutionsstrategie'94, fromman - holzbolg, 1994.
[6]. F. Hoffmeister; T. Back: Genetic Algorithms and Evolution Strategies : Similarities and Differences, Interne
Berichte und Skripten der Universitat Dortmund No. SYS 1/92.

