I Krajowa Konferencja
Algorytmy Ewolucyjne
Murzasichle, 12-15.06.1996

Self-adapting Parallel Genetic Algorithm
with the Dynamic Mutation Probability, Crossover Rate
and Population Size.

Joanna Lis Mirostaw Lis
Institute of Biocybernetics and Biomedical FRACTAL Software Studio
Engineering Obroncow Warszawy 6/5
Polish Academy of Sciences Plock, Poland, 09-402

Trojdena 4, Warsaw, Poland, 02-109
e-mail: joanna.lis@ibib.waw.pl

Abstract:

In this paper the parallel genetic algorithm with dynamic mutation, crossover rates and
population size is proposed. This algorithm is based on the farming model of parallel
computing. The basic idea of the dynamic establishing of control parameters is presented.
Several experiments on function maximization problems have been performed to study the
effects of varying the settings for the parallel model.

1. INTRODUCTION.

Genetic Algorithms (GAs) belong to the important mainstream forms of Evolutionary
Algorithms (EAs), which are search and optimization techniques based on the principles of
natural evolution (De Jong, 1975). GAs have been widely studied as function optimization
methods. In many cases the standard GA turned out to be inefficient in the multimodal
optimization problems. This was the reason for the introduction of a couple of advanced
techniques based on improved selection schemes, the recombination operators and the
adaptation of the algorithm's strategy parameters (Michalewicz, 1992).

EAs are controlled by several strategy parameters. In the case of GAs these are the population
size (), crossover probability (pc), mutation rate (py), the length of individuals, generation
gap, crowding factor, or the maximum expected value in case of ranking. However, it is clear
that different GA parameter settings will be optimal for different objective functions.

The settings most commonly used up till now were determined empirically in a large number
of experiments (De Jong, 1975), (Grefenstette, 1986), (Schaffer, 1989).

source population size crossover probability mutation probability
[Dedo75] 50-100 0.6 0.001
[Gref86] 30 0.95 0.01
[Scha89] 20-30 0.75-0.95 0.005-0.01

Table 1. The optimal values of the parameters of the GA using a binary version of solution.

A number of researchers proposed including the GA control parameters directly into the
genetic code (De Jong, 1975), (Shaefers, 1987). Another attempt of adaptively changing the
GA configuration is also the "punctuated crossover" operator (Schwefel, Maenner, 1991).

Among the most promising methods of speeding up the convergence and improving
robustness of evolutionary optimizations there are the adaptive techniques, which modify EAs
parameter settings adaptively during the search process. According to the experimental and
theoretical arguments an optimal control, exogenous parameters for all possible topologies of
the objective function does not exist. Therefore, the optimal settings of the GA must be

80 J. Lis, M. LIs

determined for every application separately. Hence, the investigations of the adaptive
techniques seems to be very promising from the point of view of a much broader variety of
optimization algorithms, for which the general principle self-adapting mechanisms might be
applicable.

This paper is organized as follows. The next sections present the background of GA and PGA
adaptive extensions. In section 3 the parallel model of a GA with dynamic control parameters
is presented. Section 4 describes the experiments and the results. The last section contains
concluding remarks and hints for further research.

2. ADAPTIVE EXTENSIONS OF GAs

The idea of adapting the crossover probability, mutation rate and population size to improve
the GAs performance has been employed previously. In the crossover mechanism discussed by
Schaffer the distribution of the crossover points is adapted according to the performance of
the generated offspring. The distribution information is encoded into each string using
additional bits (Schaffer, 1987). Fogarty has studied the effects of varying the mutation rate
over generations and integer encodings; the mutation rate decreased exponentially with
generations (Fogarty, 1989). Davies discusses an effective method of adapting operator
probabilities based on the performance of the operators. The mutation probability determined
in advance was distributed among several competing genetic operators according to the
number of the descendant chromosomes which acquired values of the fitness function better
than any previous one (Davis, 1989). In (Whitley, 1989) the mutation probability value was
conditioned by the mean Hamilton distance of solutions represented by the chromosomes in
the context of a steady state GA. The method proposed in (Lis, 1995) consists in modifying
the mutation probability (the mutation probability is determined for each individual as a
function of its fitness, similar to variance of fitness) when the GA is being generated; it is
based on transitory test results and allows to reach a nearly optimal mutation probability in a
short time span. The approach described by Béck in (Back, 1992) is different from the above
mechanisms and the principle of his self-adapting method has been directly taken from
Evolutionary Strategies. The adaptive mutation rates are handled as temporary and
individually differing parameters. The mutation rates are initialized randomly and encoded as
bit strings. They are also subject to mutation and selection. Very interesting self-adapting
mechanism in EAs is described in (Fogel, 1995). Goldberg et al. investigated the effect of
population size on GA behavior (Goldberg, 1992). A population sizing equation was derived
that involves variance of building-block, fitness, noise of the genetic operators, and noise in
the objective function. The authors found that with small populations, the GA performance is
determined by chance, by mutation, or by another mechanism that serially injects diversity.
Among several extensions to this work an on-line population sizing technique was proposed.
The on-line sizing of the population could be based on information about the problem size,
population variance, minimum signal and order of deception. Smith in (Smith, 1993)
introduced an algorithm which adjusts the population size to the probability of selection error.
Arabas et al devised an adaptive method for maintaining variable population size, which grows
and shrinks according to some characteristic of the search (Arabas, 1994).

3. THE EFFECTS OF MUTATION, CROSSOVER AND POPULATION SIZING FOR PARALLEL
GENETIC ALGORITHM

3.1. THE CHOICE OF THE CONTROL PARAMETERS IN PARALLEL IMPLEMENTATION OF
GA

Good results obtained with the adaptive techniques suggest further investigations of this
idea, with special emphasis on the parameters: py, pc and s. On the other hand, due to

Self-adapting parallel genetic algorithm with the dynamic... 81

increasing demands for the application of genetic algorithms to large and complex search
spaces with costly evaluation functions, and using large population sizes to reduce the problem
of premature convergence, there is an ever growing need for fast implementations which
allow quick and flexible experimentation. Parallel processing is the natural route to explore.
Genetic algorithms are well suited for parallel execution (Fogarty, 1991), (Stender, 1994). In
the case of parallel computer architecture design for GA new possibilities of automatic
calculation of GA control parameters emerge.

The idea of adopting control parameters to improve the performance of parallel GA has
been utilized previously (Miihlenbein, 1987). Very interesting ways of differentiating the
subpopulations consist (Cohoon, 1991) in using for the evolution of each subpopulation GAs
with different control parameters, such as crossover and mutation rates or population size.
Tanese presented an algorithm (Tanese, 1989), in which the individuals sent by each
subpopulation to the neighboring ones were chosen randomly from among those whose fitness
was at least equal to the average fitness of the subpopulation. Tanese's experiments were
performed with parameter settings (mutation and crossover rates) different from those
recommended by De Jong, and with different settings for each subpopulation (Tanese, 1989).
Whitley in (Starkweather and Whitley, 1991) suggests that "adaptive mutation” may be an
important factor in obtaining superior results using PGA. Whitley's adaptive mutation
establishing the mutation rate for the offspring according to the similarity of the two parents.

In this paper a new method of the dynamic establishing of the PGA mutation rate,
crossover probability and population size is proposed. This method is based on a farming
model of parallel GA and probability of mutation is established during execution of the
algorithm.

3.2. PARALLEL GENETIC ALGORITHM WITH THE DYNAMIC MUTATION PROBABILITY

A. Model.

The farming model (Marin, 1995) of parallelizing the problem of establishing mutation

probability during the algorithm execution is used. The transputer net is organized in a master-
slave fashion. The interconnection topology is logically a star, with the master in the center.
The master processor allows the user to define parameters for a run and view the current
result of the run.
The basic idea of the approach proposed in this paper is as follows. At the beginning of a run
the master processor randomly generates an initial population, which it distributes among the
slave processors and then supervises the activities of these processors. Each of the slaves
executes the sequential GA. The population is evolving independently during a certain number
of iterations called epoch or migration period. During the run, the slave processors
periodically (after each epoch) report their best partial results (the individuals with the best
fitness function values) to the master. The master assembles these results and re-sends them to
the slaves as their new populations (the same for each slave processor).

B. Establishing the mutation probability.

A set of different mutation probability values (levels) is determined. At the beginning of the
first epoch, three consecutive values of mutation probability are chosen. Next, each of the
slave processors executes the sequential genetic algorithm with one of these three values of the
mutation rate. Assume that during a given epoch, the best result (in the sense of the fitness
function value) is obtained by the process with the highest mutation probability (from among
three several consecutive values). Then, the probability of mutation for each process is shifted
one level up. In the opposite case the mutation probability is shifted towards lower values. If

82 J. Lis, M. Lis

Run serial Genetic Algorithm on each process for number_of_generations

Receive the best individuals from processes

Form a new population

If the best individual was obtained by process with max mutation probability
Increase mutation rate for all processes to higher levels

If the best individual was obtained by process with min mutation probability
Decrease mutation rate for all processes to lower levels

Endfor.
Where: num_of epoch and number_of generations are the constant external parameters.

3.3. EXTENSION TO PARALLEL GENETIC ALGORITHM WITH SEVERAL DYNAMIC
PARAMETERS

A. The method of dynamic establishing of the mutation probability executes a number of
generations for three different values (levels) of mutation rate. For each of these values the
fitness function is evaluated. The best fitness function value points at the best parameter value.
The above method can be extended to dynamically establish more than one control parameter.
This extension consists in constructing the best set of parameters (in the sense of the fitness
function value).

The most intuitive route to proceed study those control parameters behavior would be to vary
the parameters of interest in a full experimental design, that is to try all possible combinations
of low, medium and high values of these parameters. This would work fine, except that the
number of necessary runs would increase geometrically. For example, if we want to study 3
control parameters (P ,Pc,s), the necessary number of runs would become 33 =27.

In order to eliminate the time-consuming computation, the statistic experiment planning
methods - the Latin Squares designs - can be useful. These methods are typically used to
identify the optimum settings for the different factors that affect the experimental process. The
Latin Squares designs are used when the features of interest have more than two levels, and
the interactions between factors are not interesting.

The example parameter sets for 3 parameters with 3 values (low L, medium M and high H)
are showed below in Table 2.

experiment number | 1 2 3 4 5 6 7 8 9

parameter 1 L L L M M M H H H
parameter 2 L M H L M H L M H
parameter 3 L M H M H L H L M

Table 2. Latin Squares experiment design.

After applying the Latin Squares designs the number of GA runs was significantly decreased
(9 runs instead of 27). Notice, that for each particular parameter value, there are experiments
with all the possible values of other parameters. Hence, this method allows an unbiased
estimation of the particular parameter influence on the experiment result.

Suppose that the value of one of the parameters, say pp, is fixed at level i. The performance
of the GA may than be measured by the average of the best fitness function values obtained
during all runs in which all the remaining parameters (pc, s) were varied. The level i giving the
best performance is then chosen and used to determine py, employed by all the processes

Self-adapting parallel genetic algorithm with the dynamic...

the best fitness function value corresponds to the medium mutation probability is left
unchanged.

The procedure is based on the assumption, that for a given environment (e.g.
optimized function, GA version) and for a given generation there is one optimal value of
mutation probability, and that the GA performance dependence on mutation probability is
unimodal. Of course, the performance is affected by noise, but the experiments indicate, after
the noise component is smoothed, the above assumption are well justified (e.g. (Lis, 1994)).

The following figure (Fig.1) illustrates how the method works. The vertical axis show what
fitness function value can be obtained after some generation, horizontal axis show the
mutation probability.

fitness fitness
NN .
/F"’// \3\"'\ . .,
/0 i\ N
W A W
iy 8 A ¥
A NN AR
A i NS
SiYE LA fiy !
o Wi A B
//"I,/, P \!.l ’l.!/ H :
pyn i b /5 P
oo N Pm v B
AR B B AR R R R R iy Pt P
17 {] — 1 1 1]
currently tested p currently tested p
decision: increase p decision: increase p
fitness
i b
il [i
VA AN
SES AEA
A NN
AL/ [AN
4 P \ia
//:’\.i'/ [T Wi
/i 7 Pl Nd
N/ t &3 \!
5 [\
¥ [\ p
e '} ‘l ! Lot ‘

currently tested p -

decision: do not change p .

Fig.1.a,b,c. Mutation probability modification.

C. The scheme of PGA with dynamic mutation probability.
Determine a set of possible mutation probability levels
Choose three initial mutation probability levels from the set of mutation levels for processes
Randomly generate an initial population
For epoch = 1 to num_of_epoch do
Send the population to processes
Send the control parameters to processes

83

84 J. Lis, M. LIs

(farms) during several next generations. These py, values may be shifted one level up (ifi = 3),
left unchanged (if i = 2), or shifted one level down (i = 1). Optimal values of all the other
control parameters are determined using the same strategy.

B. After extension to more than one dynamic parameter, the scheme of PGA is as follows:
Determine a set of possible parameters levels
Choose initial parameters levels from the set of allowed levels for processes
Randomly generate an initial population
For epoch = 1 to num_of_epoch do
Send the population to processes
Send the control parameters to processes according to experiment plan

Run serial Genetic Algorithm on each process for
average_number_of_generations * average_size / population_size

Receive the best individuals from processes
Form a new population
For each parameter do
For each of 3 control parameter levels do
Average best individuals fitness for all processes using this level
Endfor
If the best average was obtained by process with max parameter level
Increase parameter for all processes to higher levels
If the best average was obtained by process with min parameter level
Decrease parameter for all processes to lower levels
Endfor
Endfor.

To give equal chances to the competing processes with different population sizes, the product
of population size and number of generations in epoch are equal. The average number of
generations and average size are defined in advance. Then, at the beginning of each epoch the
number of generations for each process is calculated, according to the population size
parameter. It means that every process has the same time to show its usefulness.

4. EXPERIMENTS AND RESULTS.

The presented method was applied to dynamic establishing of the mutation probability, the
crossover probability and population size. The PGA with dynamic control parameters was
tested on a set of functions G1, Gy, G3, G4 (Arabas et al, 1994).

The test functions are as follows:

G1: —xsin(107w) +1 -2.0 <x<10
Go: integer(8x)/8 0.0 <x<10
G3: x-sgn(x) -1.0<x<2.0

Self-adapting parallel genetic algorithm with the dynamic...

Gy: 0.5+ sin’ Vx2+y2"°'52 -100.0<x, y <100.0
(1+0.001(x2 +y2)) |

Performance of the PGA with dynamic control parameters has been compared to the
performance of the Goldberg's Simple Genetic Algorithm (SGA) (Goldberg, 1989) and the
GAVaPS (Genetic Algorithm with Varying Population Size) (Arabas, 1994).

The following assumptions were made for these experiments:

The problem coding methods as well as genetic operators were identical for SGA, GAVaPS
and PGA (a simple binary coding has been used and two genetic operators: mutation and one
point crossover). The initial parameter settings were initialized at random. In order to mimic
the same conditions for the compared experiments, the stop criterion was changed. Instead of
executing GA for certain number of epochs, the algorithm was stopped after 20 iterations, in
which the best individual fitness function value did not improve. As in the reference
experiments, the population was initialized randomly and 20 independent runs were
performed. Then, the best individual fitness function values were averaged over these 20 runs.
In Table 3 this average value is compared with the results reported in (Arabas et al, 1994).

Type of the algorithm Functions
G Gy G3 Gy

PGA with Dynamic Mutation, 2919 £ 2.000 0.997
Crossover and Population Size 0.815 '

SGA 2.814 0.875 1.996 0.959
GAVaPS (1) 2.831 0.875 1.999 0.969
GAVaPS (2) 2.841 0.875 1.999 0.970
GAVaPS (3) 2.813 0.875 1.999 0.972

Table 3. Comparison of different Genetic Algorithms.

As it is showed in Table 3, the PGA presented here outperformed the other algorithms
considered for every test function.

The parallel genetic algorithm with the dynamic mutation, crossover and population sizing
was implemented in OCCAM 2 on INMOS transputer board. The board contained four T
800 transputers, each with 1 MB of memory. The transputers were cycled by 25 MHz clock.
The OCCAM programing language is a high level language, designed to express concurrent
algorithms and their implementation on a network of processing components. OCCAM
enables an application to be described as a collection of processes, where each process
executes concurrently, and communicates with other processes through channels.

5. CONCLUSION AND FUR'fHER WORK

The behavior of GA's control parameters is complex and it has been the subject of intensive
research. For example, it is known that the performance of a GA can range from that of
random search to hill climbing, depending on the GA parameters settings. Designing a GA
that meets the resource constraints of a given application may require a substantial amount of
GA control parameter tuning. The adapting strategy introduced here, allowing to establish

85

86 J. Lis, M. Lis

several control parameters dynamically can be used in many applications. For example, one
could imagine using several different mutation operators, each with its own probability rate.
Because of the dynamic establishing of these rates the congruency of the operators can occur.
Investigating the possible dominance of the operators in different stages of a GA run can be
very interesting. This is also the way to introduce new operators, useful only in case of specific
situations, e.g. at the beginning of a GA run. Once such an operator completes its task, its
probability should decrease. »

The goal of the technique presented here is to design a "self-learning” GA that can be
repeatedly applied to a particular class of problems.

6. REFERENCES.

(Arabas, 1994) Arabas J., Z. Michalewicz, J. Mulawka, "GAVaPS - a Genetic Algorithm with Varying
Population Size" in Proc. 1st IEEE Int. Conf. on Evolutionary Conference, Orlando, USA, pp. 73-78,
1994,

(Bick, 1992) Bick T., F. Hoffmeister, "Genetic Algorithms and Evolutionary Strategies. Similarities and
Differences”, Report of the Systems Analysis Research Group SYS/92, University of Dortmund,
Department of Computer Science, 1992.

(Cohoon, 1991) Cohoon J.P., Martin W.N., Richards D.S., " A Multi-population Genetic Algorithm for
Solving the K-Partition Problem on Hyper-cubes”, in Proc. of the 4-th Int. Conf. on GAs, 1991

(Davis L. 1989). "Adapting operator probabilities in genetic algorithms", in Proc. 3rd Int. Conf. Genetic
Algorithms, Morgan Kaufman, San Mateo, 1989.

(De Jong, 1975) De Jong K. A.,"An analysis of the behavior of a class of genetic adaptive systems", Ph.D.
thesis, Univ. of Michigan, Ann Arbor MI,1975

(Fogarty, 1989) Fogarty T. C., "Varying the probability of mutation in the genetic algorithm", in Proc. 3rd Int.
Conf. GAs, pp.104-109, J. Schaffer (ed) Morgan Kaufman, San Mateo, 1989.

(Fogarty, 1991) Fogarty T., "Implementing the Genetic Algorithm on Transputer Based Parallel Processing
Systems", Parallel Problem Solving from Nature 1, 1991.

(Fogel, 1995) Fogel D. B, "Evolutionary Computation. Toward a New Philosophy of Machine

Intelligence", IEEE Press, New York, 1995.

(Goldberg, 1992) Goldberg D.E., K. Deb and J.H. Clark, "Genetic Algorithms, Noise and the Sizing of
Populations", Complex Systems, Vol.6, No.4, pp. 333-362, 1992.

(Grefenstette, 1981) Grefenstette J., "Parallel Adaptive Algorithms for Function Optimization”, Vanderbilt
University, Technical Report CS-81-19, 1981.

(Grefenstette, 1986) Grefenstette J., "Optimization of control parameters for Genetic Algorithms", IEEE
Transactions on Systems, Man and Cybernetics, Vol.16, No.1, pp.122-128, 1986.

(Lis, 1994) Lis J.," Algorithms of classifiers design based on neural networks", doctoral thesis. Institute of
Biocybernetics and Biomedical Engineering, PAS, Warsaw, 1994.

(Lis, 1995) Lis J., "Genetic Algorithm with the Dynamic Probability of Mutation in the Classification
Problem", Pattern Recognition Letters, vol.16, pp.1311-1321, 1995.

(Marin, 1995) Marin F., Trelles-Salazar O., Sandoval F., "Genetic Algorithms on LAN-message Passing
Architectures using PVM: Application to the Routing Problem",pp.1995.

(Michalewicz, 1992) Michalewicz Z. "Genetic algorithms + data structures = evolution programs", Springer-
Verlag, 1992

(Muehlenbein, 1987) Muehlenbein H., Georges-Schleuter M., Kraemer O. "New solutions to the mapping
problem of parallel systems: The evolutionary approach”, Parallel Computing 4, pp.269-279, 1987.

(Schaffer, 1987) Schaffer].D.,Morishima A., "An adaptive crossover distribution mechanism for GAs"in Proc.
2nd Int. Conf. on Genetic Algorithms, pp.36-40, MIT, Cambridge, MA, 1987.

(Schaffer, 1989)- Schaffer J. D., R. A. Caruana, L. J. Eshelman and R. Das, "A study of control parameters
affecting on-line performance of genetic algorithms for function optimization.", In Proc 3rd. Int. Conf.
Genetic Algorithms, pp.51-60, J.Schaffer (ed.), Morgan Kaufman, San Mateo, 1989.

(Smith, 1993) Smith R. E., "Adaptively Resizing Populations: An Algorithm and Analysis", in Proc. 5th Int.
Conf. Genetic Algorithm, Forrest S. ed., pp. 653, Morgan Kaufmann Publishers, Los Altos, CA, 1993

(Starkweather, 1991) Starkweather T., Whitley D., Mathias K.," Optimization Using Distributed Genetics
Algorithms", in R. Moenner, B. Manderick, ed., Parallel Problem Solving from Nature,1,pp.176-185,
Elsevier Science, 1991.

(Stender, 1994), Stender ed. "Parallel Genetic algorithms”, IOS Press, 1994.

(Tanese, 1989) Tanese R., "Distributed Genetic Algorithm". in Proc. 3rd Int. Conf. Genetic
Algorithms,pp.434-439, J. Schaffer (ed.), George Mason University, Morgan Kaufman, 1989.

