I Krajowa Konferencja
Algorytmy Ewolucyjne
Murzasichle, 12-15.06.1996

TWO STAGE GENETIC SEARCH ALGORITHM FOR GENERALIZED GRAPH
PARTITIONING PROBLEM !

Piotr Kadluczka*, Konrad Wala**
Institute of Automatics, University of Mining and Metallurgy,
Krakéw, al. Mickiewicza 30, Poland
*pkad@ia.agh.edu.pl, **kwa@ia.agh.edu.pl

Abstract

The paper considers the generalized problem of partitioning the n nodes of a weighted
graph into m disjoint subsets of bounded size, such that the objective function related to the
weights of the graph edges is maximized. There are reported the computer experiment result of
examination of approximate algorithm based on general purpose search strategy called genetic
algorithm.

1. Introduction

Graph partitioning serves as a model for several important problems. For instance, it can be
used in integrated circuit layout in Very Large Scale Integration [1], in storing or processing
large computer programs in distributed computing systems [4],[6] and in group technology
classification problems [31],[5].

The generalized graph partitioning problem (GGP), first described in [3],[4], can be
formalized as the following combinatorial optimization problem. Given an undirected and
weighted graph G=(N,E) and a set of numbers {bl,bz,...,bm}, where b, >0 for i=1,...,m. Find

a graph partition Xz(Xl,Xz,...,X,.,...,Xm), X, c N, of the set N={1,2,....j,....,n} which

maximizes:

m
f(X)=3% % ¢ 1)
i=1j,keX;
subject to:
UX, =N, X,nX, =0 for izk)
i=1
> a; < b, =1,...,m 3)
JjeX;
where:
a; = (alj,azj,...,a,-j,...,am]-) . weight vector of the node jeN,
C weight of the edge jk<E.

Constraints (2) ensure that each graph node is allocated precisely in one cluster (set) X;.
Constraints (3) limit the size for each cluster. The objective function f(X) is the aggregate

measure accounting for intra-cluster similarities or proximities.
It is assumed, without loss of generality, that for each jkeE: ¢;>0 and for jk¢E: ¢;,=0 as

well as a; = if node j can not be assigned to cluster X;, otherwise: 0<a; <o for i=1,...,m;
j=1,...,n. Let F(j) denote the set of feasible cluster numbers for node j : FG)={ 1e{1,2,...,m}:

1 The work was supported by Polish Committee for Research, grant 3 P403 012 06

58 P. KADEUCZKA, K. WALA

a;<oo}. In this formulation, b, is the resource or size of i-cluster. If for eachiandj a;=1 then
b, limits the number of nodes in cluster i and the constraint (4) has the form |X;| < &,.

We called the formulation (1),(2) and (3) the generalized graph partitioning (GGP) as
opposed to standard graph partitioning where for each i: a;=a; and the constraint (3) has the
form 3 a; < 5. Feo and Khellaf [2] proved that graph partitioning is NP-hard

ieX;
combinatorial problem.

Let us define s,, the capacity slack of i-clusters as follows. Let X be a given solution of the
GGP that satisfies the assignment constraints (2) but does not necessarily meet the capacity
restrictions (3), then

s;=b— ¥ a; =1,...m 4

jeX;

Our genetic algorithm assures that the assignment constraints (2) are always satisfied,
however, infeasibility may occur due to violation of the capacity constraints (3). Therefore,
infeasible solutions are these for which s, is strictly less than zero for at least one 1. A measure
of infeasibility, v, of an assignment-feasible solution X, may be defined as the absolute value of
the sum of all the negative capacity slacks:

w(X) = % min{s,, 0})

where, to be precise, the solution X =(X},X,,...X,,....X,,) is an assignment-feasible one if the

constraints (2) are satisfied and for each j € X;: i€F(j).

Taking into account genetic algorithm requirements concerning the solution form of the
investigated problem, we introduce the second form of the GGP problem solution
x=(X,%5,...,X j,...,xn), where component x,,x; € F(j), defines the qluster number for the node

jand X, = {j:x, =i}. Further, we denote the GGP problem solution by symbol x corresponding
to X.

2. BREADTH_DEPTH genetic search process

Genetic algorithm (GA) consists of a population and of the genetic operators. The
knowledge, accumulated in the search process for the solution, is encoded as a set P of
solutions called population, where M=|P| is the size of the population. The evolution process of
the population P, modeled by GA, realizes the search process by use of genetic operators.
Every genetic operator generates new solutions called offspring on the basis of old solutions
called parents.

In the classical GA the search process is organized as the following evolution of the
population. At each iteration t of the algorithm the whole 'old' population P=P(t-1) is replaced
by the 'new' one P=P(t). A new population P(t) is formed by selecting the more fit solutions
from the old population P(t-1) and some (only some!) members of the new one undergo
transformations by means of genetic operators to form new solutions.

Michalewicz in his works (see, Chapter 4 in [7]) exploits the modified approach to GA,
modGA. The modification with respect to the classical genetic algorithm is that in the modGA
a new population is formed by selecting, from the old population, independently only T,
1<r<M, solutions to be parents and r solutions to die. These selections are performed with
respect to the fitness of the solutions: a solution with a better than average performance has a
higher chance to be selected as parent, solutions with a worse than average performance have
higher chances to be selected to die. Then the new population consists of (M-r) solutions of the

Two stage genertic search algorithm for generalized graph partitioning problem

old population (all solutions exept these selected to die) and r offspring of the r selected
parents; i.e. r (all!) selected solutions undergo transformations by means of genetic operators.
This way, in course of one iteration (one generation) only r, r <M, solutions are selected and
processed.

Michalewicz emphasizes few differences between classical GA and modGA. Firstly,
modGA better utilizes the available storage resource: population size. The algorithm avoids
leaving exact multiple copies of the same solution in the new populations. Additional feature of
modGA is better time complexity of the whole algorithm in comparison with the classical one.
Secondly, it applies genetic operators on the whole solutions as opposed to individual
components of the solution. This would provide an uniform treatment of all operators used in
the algorithm. Thirdly, only few, r <M members of the population are changed within each
generation, so the modGA belongs to a class of srteady state GAs..

We examine genetic search process called BREADTH_DEPTH (see, [8]), where in course
of one iteration initially one genetic operator is randomly chosen and then r, re{1,2}, solutions
are selected from the population and processed: one solution if unary operator is chosen and
two in case of crossover operator. Thus the algorithm also belongs to the class of Steady State
GAs and in this way it has all features, above-mentioned, of the modGA.

We assume that the population set P is linearly ordered in accordance with the solution's
fitness by means of ordering rule BEST-WORST: the best population solution (x,,) has
number 1,..., the worst one (x,,,,) has number M=|P|. Besides, to simplify genetic search
process and save the computation time, the parents are selected from the population P by
means of random-uniform sampling mechanism and the generated offspring is placed in the
population P only in case if it is better, in accordance with the rule BEST-WORST, than the
worst population solution x,, ,.,; otherwise the offspring is rejected.

Let us notice that the best population solutions have the chance to be selected more times
than other solutions and in this way these solutions become super individuals. Such super
individual has a large number of offspring and due to the constant size of the population
prevents other individuals from contributing offspring in the next generations. In some
generations a super individual can eliminate desirable 'chromosomal material' and cause rapid
convergence to the local optimum. To avoid this shortcoming we introduce the tabu
mechanism. We assume that at the first stage of the genetic search process called BREADTH
some number of best population solutions, TOPTAB top-solutions, are tabu and can not be
chosen as parents. It is most likely that in this case the genetic search process can be performed
in the whole search space. In the second stage of genetic search process called DEPTH , after
when BK offspring are generated, where <1 and K is the number of generated offspring in
one computer experiment, the genetic search process is enhanced to the space regions
connected with the best population solutions for local tuning. Thus, in this stage, the mutation
operator is replaced by local opimization (hill climbing) procedure and some number of worst
population solutions, ENDTAB end-solutions, are tabu can not be chosen as parents.

3. Algorithm
The GENGGP3 algorithm realizes the BREADTH_DEPTH genetic search process for
generalized graph partitiong problem. Algorithm exploits five genetic operators:

1. Random mutation operator RM
Operator RM generates one offspring x! on the basis of one parent
X =20, X0, X 1% 50 %)

a) choose one number j, 1 <j<n and x;' =RANDOM_UNIFORM(F(j))

59

60 P. KADEUCZKA, K. WALA

Jl.,...,xn)

b) set x' =(x,,%,,...%; 1, X
2. Search operator S1

Operator S1 generates one offspring x! on the basis of one parent

> S EE SN AT R IS S N

a) choose one number i, 1<i<n, and "best" number j:

j=arg max {fO6X 0 X 1K X 15 K15 Xi K415 %) K €{1,2,...,n} and v(x) is minimal }

b) swap element X; of the parent for element Xj: xh <06, 35, X4 X oo X —1%i5++%n)

3. Search operator S2
Operator S2 generates one offspring x' on the basis of one parent
X =(X), %, X j_ 1% 5 Xp)
a) choose number j, 1 <j<nand the "best" number i, such that
SO X, X 15X 1y X)= max{ SO0, X 1K X 15 ,xn) k € F{j) and v(x) is minimal}

#XJ

b) replace element X; of the parent with number 1: x! =(x1,x2,...,xj_1,1,...,xn)

4. Random crossover operator RX
Operator RX generates two offspring x!, x* on the basis of two parents
X" =020 X)X 5) s X =X, XX, X
a) choose one numberj, 1 5j<n
b) generate two offspring
"y n "\’
2)

’ -
x _(x17x2: . ja j+1: ,X'n,) x (x1>x2> ’xl’ J+e ’xn

5. Local optimization operator LO
Let S(x)={x"x"=(x,x,,.. X1uX i41sen X)X E X, X €F()),] e{l,...,n}}
denotes the neighbourhood of the solutlon X (X1, X0, X 5 X).

’jl’

Operator LO generates one offspring x' on the basis of one parent x:

a) find a solution x’ = arg max{f (x):x €S(x),x # x and v(x) is minimal}

b) if f(x')> f(x) then set x:=x' and go to step a), otherwise return x':=x.
Each genetic operator has the operation "choose" realized by RANDOM_UNIFORM
procedure. Besides, operators S1 and S2 have choose operation together with simple search
operation; "choose the best number".

Algorithm: GENGGP3

To determine the approximate solution X, do the following.

STEP 1.
Generate M solutions x=(x,,X,,....X,...,X,), where for each j:

Xx; = RANDOM _UNIFORM(F{})), as well as compute objective function f(x) and measure of
infeasibility v(x) for each solution. Set up the initial population P(0) ordering the generated
solution by rule BEST-WORST so that the first solution (solution No.1) in population is the

best one and the last solution (solution No.M) is the worst one.
STEP 2.

a) If the number of generated offspring is less than BK (optimization process stage

Two stage genetic search algorithm for generalized graph partitioning problem

BREADTH) then choose one genetic operator from the set {RM, S1, S2, RX}, where

selection probability of the operators are: pry=Ys Psi1> Ps2> Pr1-Y-Ps17Pso-

b) If the number of generated offspring is greater than K (optimization process stage
DEPTH) then choose one genetic operator from the set {LO, S1, S2, RX}, where selection
probability are: p; =Y, Ps;, Psz, Prx™1-Y-Ps1-Ps2-

STEP 3.

For the chosen genetic operator sample, with uniform distribution, one or two parents
(subject to the type of genetic operator: one for unary operator and two for crossover

operator) from the old population P(t-1):

a) less TOPTAB best solutions (i.e., the solutions No.1,2,..., TOPTAB) if the number of
generated offspring is less than fK;

b) less ENDTAB worst solutions (i.e., the solutions No.M-ENDTAB+1,M-ENDTAB+2,....M)
if the number of generated offspring is greater than BK;

STEP 4.

Using chosen genetic operator, generate offspring x’,je{1,2}, and set up new population
P(t): if the offspring x” is better than the worst solution in population P(t-1), then solution
X,,0rst i Temoved from the population and offspring x/ is introduced between other population
solutions in accordance with ordering rule BEST-WORST.

STEP 5.

After generation K offspring return x,,,,,,.= arg max { f(x): xeP(t) and v(x) is minimal }.
Let us notice that the population size M, total iteration number K and coefficient 8, tabu
numbers TOPTAB and ENDTAB and genetic operator selection probabilities ¥, Pg;, Psz Prx
are GENGGP3 algorithm parameters; RANDOM UNIFORM procedure is sampling
procedure with uniform distribution. '

4. Computer experiments

The basic genetic algorithm's fault, when an optimization problem is considered, is inability
to represent the problem constraints like size constraint (3). In our computer experiments we
consider two ordering rules BEST-WORST for the population solutions that allow constraint
optimization problems to be addressed.

The first ordering rule uses penalty function formulation. In this case the evaluation (i.e.,
fitness) function EV(x) of the GGP problem solution x consists of the objective function f(x)
together with function v(x) (see, formula (5)):

EV(x)= flx)+rw*v(x) ©)
where w, w>0, is the weight coefficient of the evaluation function. Let us notice that
coefficient w defines the part of infeasibility measure of the solution in evaluation function.
There is no accepted methodology for choosing the weight coefficient w except rather large
number of computer experiments. In case of incorporating a high penalty coefficient into the
evaluation function we take the risk that if feasible solution is found, it drives the others out
and the population converges on it without finding better solutions, since the likely paths to
other feasible solutions require the production of infeasible solutions as intermediate structures,
and the penalties for violating the constraint make it unlikely that such intermediate structures
will reproduce. On the other hand, if the penalty coefficient is rather small the algorithm,
especially for the heavily constrained problems, may generate solutions that violate the
constraints.

In this modification function EV(x) is used for linear ordering of the set P solutions: the first
(i.e., the best) solution of the population is that one with the maximal EV(x) value:

61

62 P. KADEUCZKA, K. WALA

Xpost = X pirge = QTG Max {EV(x):x €P},..., the last (the solution No.M) is the worst solution
worst — Xlast = I8 min {EV(X) X EP}

The second ordering rule uses special case of Pareto formulation. Solutions in the set P are
mapped into Euclidean two-space. The first coordinate of the image is the function v(x) value
and second coordinate is the objective function f(x) value. Non-dominated solutions are
assigned to the first Pareto front. The remaining nondominated solutions form the second front
and so forth. Each Pareto front is additionally ordered in accordance with the function v(x)
value: the first (the best) solution of the front is that one with minimal v(x) value and the last
(the worst) one is that with maximal v(x) value. The linearly ordered Pareto fronts determine
the linear order in population set P: the first solution of the first ordered Pareto fronts defines
the best (the first) solution x,_,..., the last solution in the last ordered Pareto front defines the
worst (the last) solution x,,,., in the population P.

On the basis of GENGGP3 algorithm the computer programming system, coded in C for
IBM PC compatible computers under MS DOS operating system, was developed. In this
section we report computer experiments realized with the aid of this programming systems for
a test example of size n=30 and m=6, where the test data of matrices [c;, 39530 and [a; 1,30 are
presented in papers [3],[4]. The matrix [5,] is equal to [17,18,18,15,13,16].

All computer experiments, performed by means of GENGGP3 algorithm, consisting of K =
15000 search process iterations for the following constant algorithm parameters: M=100, y
=0.1, pg;=Ps;=Prx=0.3. In tables below we use the following notations:

X.

f(X,pr) - Objective function value of the best solution X5
V(X,,r0r) - measure of infeasibility of solution X0
NL - number of search process iteration when the best solution x,,,.,,, was found.

Table 1 presents results of twenty experiments testing the first ordering rule BEST-WORST
for following algorithm parameters: TOPTAB=5, ENDTAB=50, we{50,100,...,20000}, Be
{0.33, 0.67}. Let us note that in this case we have to perform some number of experiments to
determine the right weight coefficient w.

Table 1. Experiment results for first ordering rule

p=0.33 p=0.67

w ﬂxapprox) v(xappmx) NL f(xapprox) v (x approx) NL

50 6892 13 176 6892 -13 176
100 8374 -11 814 8374 -11 814
200 9486 0 3521 9486 0 3521
300 11264 0 8053 11264 0 12645
400 11264 0 12365 11264 0 11295
500 11180 0 8599 11264 0 10027
1000 11180 0 11293 11066 0 12464
5000 11264 0 9097 11142 0 11647
10000 11188 0 5683 11172 0 13788
20000 11180 0 6025 11116 0 13615

The results of twenty experiments testing the second ordering rule BEST-WORST are
presented in Table 2, where: TOPTAB=5, ENDTAB=50, B<{0.33, 0.67}.

Two stage genetic search algorithm for generalized graph partitioning problem

Table 2. Experiment results for second ordering rule

E p=0.33 p=0.67
Xper.,
No .f(xapprox) v(xapprox) NL ﬂxapprax) v(xapprox) NL
1 11.178 0 8.609 11.178 0 11.785
2 11.264 0 8.854 10.592 0 14.626
3 11.140 0 12.354 11.002 0 10.008
4 11.188 0 7.320 11.142 0 12.530
5 11.264 0 11.543 11.140 0 12.269
6 11.178 0 9.971 11.116 0 12.719
7 11.178 0 8.811 11.064 0 11.941
8 11.140 0 8.251 11.234 0 12.820
9 11.142 0 7.347 11.140 0 10.584
10 11.234 0 5.670 10.312 0 12.733
mean values 11.190,6 0 8.873 10.992 0| 12.201,5

We did also experiments with other Pareto formulation. The first coordinate of the set P
image into Euclidean two-space was the number of size constraints (3) violated instead of
function v(x) value. In this case all search processes converge into solutions violated exactly
one of m constraints (3) and the objective function was equal to the sum of all edge weights of
the graph.

5. Conclusion

The paper describes the approximate algorithm GENGGP3 for the generalized graph
partitioning problem. GENGGP3 algorithm is an instance of two stage genetic type algorithm
with exploits five genetic operators, three of them perform simple search operation besides
random choose operation. We have shown that these algorithms can be used on IBM PC
compatible computers to solve successfully GGP problem in case of application special Pareto
formulation, second ordering rule, for population solutions ordering.

References

1. Chen C. C.,(1986) Placement and partitioning methods for integrated circuit layout.
Berkeley, CA, Ph. D. Dissertation, Dep. of EECS, Univ. of California.

2. Feo T. A, Khellaf M.,(1990) A class of bounded approximation algorithm for graph
partitioning, Networks 20: 181-195.

3. Kadluczka P., Wala K.,(1993) Tabu search heuristic for generalized graph partitioning
problem, Automatics 64, 473-487, Cracow, University of Mining and Metallurgy Press.

4. Kadluczka P., Wala K_,(1995) Tabu search nad genetic algorithms for generalized graph
partitioning problem, Control and Cybernetics 24, 4, 1-18.

5. Kusiak A.,(1991) Group technology in flexible manufacturing systems,
in Handbook of flexible manufacturing systems, Ed. N. K. Jha, Academic Press, Jnc.

6. MaP.R, Lee EY.S., Tsuchiya M., (1982) A task allocation model for distributed
computing systems, IEEE Transactions on Computers 31, 1, 41-47.

7. Michalewicz Z.,(1992) Genetic algorithms + data structures = evolution programs, Berlin,
Springer - Verlag.

8. Wala K., Chmiel W_,(1995) A new genetic search scheme on an example of parallel
machine scheduling problem, Silesia Technical Univ. Press,
Automatics 116, 67-77, Gliwice, (in Polish).

63

