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Abstract

Asymptotic properties of a selection-with-mutation (SM) operator are in-
vestigated for the infinite population evolutionary algorithm (a special case of
the SGA model proposed by Vose and others). It is shown that for any strictly
positive fitness function the algorithm must converge to the unique solution,
independent of the initial population, if mutation is positive. The limiting
population is the eigenvector corresponding to the maximum eigenvalue of a
matrix related to the SM operator.

1 Introduction

In a series of articles [1, 3-5] M. D. Vose and co- authors have introduced and investi-
gated an exact mathematical model of a simple genetic algorithm. A genetic search
has been considered as a homogeneous Markov chain with a state space composed
of all possible populations of a given size. The transition matrix is determined by a
fitness function and two genetic operators (mutation and crossover). When the mu-
tation rate is nonzero, the chain is ergodic, and, as a consequence, it has the unique,
strictly positive limiting (steady-state) probability distribution, independent of an
initial state. Hence, every state of the chain (i.e., every population) will be visited
infinitely often, so that the search cannot converge to any fixed population. On the
other hand, with zero mutation the chain has many absorbing states (in fact, any
“homogeneous” state becomes an absorbing one), and there is little hope that it will
end up providing the “best” solution.

The dilemma, however, is not so serious as it could seem. GA’s were invented as
practical tools, and what matters from the practical point of view are the magnitudes
of probabilities. If the limiting probability of a state is close enough to one, then
the process will spend almost all its time in that state. (For the time being, we put
aside the question of how long it takes to achieve such a state.)
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How could we know that our GA will give high probability to a “feasible” pop-
ulation (i.e., one which contains the optimal individual)? It is clear that we cannot
answer this question by calculating steady-state probabilities. After all, we use this
algorithm just to find the optimal individual!

Nix and Vose [1] have argued that as population size grows to infinity, the steady
state of the finite population model can give nonvanishing probability only to fixed
points of an operator which determines the evolutionary path of the infinite pop-
ulation model. This result seems to validate the concept of an infinite population
genetic algorithm and provide incentives for further investigation of that model.

In this paper a special case of an infinite population genetic algorithm is consid-
ered, with nonzero mutation and no crossover. It is shown that in this case there
exists the unique limiting population vector, independent of an initial state, to which
the (deterministic) search process converges. Moreover, the algebraic characteriza-
tion of both the limiting population and its average fitness is given in terms of a
characteristic equation of a matrix.

2 The Infinite Population Model

Let Q be a genetic space, @ = {7 : 0 <i <n—1}, where n = 2!, [ > 1. The genetic
space can be thought of as the set of all binary strings of length /. A collection of
N elements (not necessarily different) of Q) is called a population of size N. Any
population can be represented by its frequency vector
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where z; is a proportion of element j € Q in a population. In other words, a
population vector is identical to baricentric coordinates of some point in the standard
unit (n-1)-simplex S™™!. A population is uniquely determined by its frequency
vector z and population size N.

This method can be used to introduce the concept of an infinite population. In
the following we will identify a population on  with a point in S™~! (or its frequency
vector).

A discrete evolution process is an infinite sequence
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of populations, or a motion of a point ® on the standard unit (rn-1)-simplex,
starting from an initial position z(®). We assume that there is some stochastic
or deterministic law of evolution which governs this motion. In the finite case,
the evolution process forms a Markov chain and the law of evolution is given by a
transition probability matrix. In the infinite case, the evolution process is essentially
deterministic, and much easier to analyze. Its law of evolution is given by some
operator Q@ : S~ — §n-1,
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In this paper, we will consider a special case of the law of evolution, determined
by proportional selection and mutation. In the next section, the corresponding
operators will be described, assuming the infinite model.

3 Selection and Mutation Operators

Let f : Q — R* be a (strictly positive) fitness function. We will use the notation f;
for f(3) (i € Q) and identify function f with the column vector (fo, ..., fa-1)7. Let
(z]y) = Ty denote the inner product of two n— vectors z,y.
The proportional selection operator F : S"~! — S$™~1 is now defined as
1

=T

where F' = diag{ fo,..., fu-1} is an n x n diagonal matrix.

The standard interpretation of the F operator is as follows: if z() is a pop-
ulation, then F(z() is a vector with components giving selection probabilities of
individuals to the next population z(**1) (prior to any genetic transformations). In
the infinite model, these probabilities coincide (by the law of large numbers) with
relative frequencies (proportions) of individuals in the new population.

We also assume the usual mutation scheme with mutation rate p, 0 < p < 1. Let
pi; be the probability of changing individual (binary string) j € Q into individual
i € Q by mutation. Then '

fij = #/z‘eaj/(l _ #)l—/i@j/

where @ is component-wise exclusive-or on binary strings and / -/ denotes the
number of ones in a binary string.
The mutation operator M : S*~1 — S™~! is defined by the following equation:

M(z) = Mz,

where M = (;;) is the mutation matriz.

It’s clear that M(z) is the population resulting from population z subject to the
process of mutation.

The selection-with-mutation (SM) operator Q is obtained by superposition of
mutation and selection operators:

Q(z) = M(F(2)) = (—f—llaczx,

where Q = MF.
It is easy to see that @ = (u;;f;) is a positive matrix (i.e., all entries of () are
positive).
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Observe also that (i) M is a symmetric matrix and (ii) F is a symmetric, positive
definite matrix. The latter fact follows from the relationship

n—1
e Fz = Zf,mf >0

=0

for all z € R",z # 0, which is true under assumption that fitness function f is

strictly positive.
In the following, we will use some facts from matrix algebra (cf. [2]):

Definition. Let K be a symmetric, positive definite matrix. We say
that a matrix A is K-symmetric if KA = ATK. Two vectors z, y are
said to be K-orthogonal if (z|Ky) = 0.

The following theorem is a generalization of the well- known result for symmetric

matrices:

Theorem. A K-symmetric matrix A has a complete set of eigenvec-
tors that can be chosen to be K- orthogonal in pairs. Moreover, the
eigenvalues of A are real.

Now, we can state the following proposition:

Proposition 1. The matrix ¢ = M F is F- symmetric.
Proof:
FQ=F(MF)=(FM)F = (FTMT)F = (MF)TF = Q"F.

An immediate consequence of Proposition 1 is that the matrix ) has a complete
set of eigenvectors that can be chosen to be F-orthogonal in pairs.

4 Evolution of Population and the Limiting So-
lution

For the infinite population model and Q operator as the law of evolution we have
20 = Qt(w(ﬂ))

Lemma For any z € S™!

e N S b
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Proof (by induction on t):
(i) For t =1 we have

Q(c) = —— Qo

~ (fl2)

(ii) Assume our Lemma is true for some ¢ > 1. Then

1
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Q- ——Q'z =
Trogem @) TIem )~ * ~ (1)
By the Perron-Frobenius theorem for primitive (in particular, positive) matrices,
there exists an eigenvalue \g of () such that:

Qt+l$-

(1) )\0 > 0,
(ii) with Ao can be associated the unique, strictly positive eigenvector
(iii) Ao > || for any eigenvalue X # Aq.

Proposition 2. For any z € S™!, a discrete evolution process

z, Q(z), Q*(2),. ..,

converges to the strictly positive limit z* € S™~!, independent of z. The
limiting population z* is an eigenvector corresponding to the maximum

eigenvalue of the matrix Q).

Proof

We will use the well-known power method. Let {};, 7 =0,...,n—1}
be the set of all eigenvalues of () and let {v@: j=0,...,n—1} be an
F-orthogonal set of corresponding eigenvectors. (We assume, without
loss of generality, that v(®) € §7~1.)

Then, any € S™~! can be expanded as

T = zajv(j), where a; € R

J

Qr = Z a; Qo) = Z a; o),
J

J

Therefore

and generally
Qiz = Zaj/\;v(j)

J
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Using the Lemma we have now
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Cancellation of the term ag above is correct because ag > 0. Indeed,
(v@|Fz) > 0 as v® is positive and Fz is nonnegative, nonzero for
z € S"1, From F-orthogonality of eigenvectors v

(vO|Fz) = Zaj(v(0)|pv(j)) = ao(v Q| Fv@) > 0,

J

hence a¢ > 0.
To complete the proof, let us observe that z* must equal v(©), Indeed,

* /\0 (0) . A0
Q"= oy = 7o)

/\0’0(0) - Ao.’ll*

Therefore, z* is an eigenvector corresponding to Aq. Moreover, z* €
§n=1 as §™1is a closed subset of R*. Hence, z* = v(®) and (f|v(?) = Xo.

5 Conclusion

We investigated the asymptotic behavior of a discrete evolution process in the infinite
population model. The law of evolution was determined by the selection-with-
mutation (SM) operator. It has been shown that, for any initial population, there
exists the unique limiting population which only depends on a fitness function and
a mutation rate. The limiting population (represented by a frequency vector) can
be algebraically characterised as an eigenvector v(® corresponding to the maximum
eigenvalue \g of a matrix related to the SM operator. The average fitness of the
limiting population is equal to the maximum eigenvalue, i.e. to the spectral radius
of the matrix.

It is not difficult to obtain first-order approximations (with respect to the mu-
tation rate u) for both Ag and v(%. In particular

AO = (1 = l”)f'maa: + 0(”)1

where fomas is the maximum fitness. However, the usefulness of such first-order
approximations has yet to be verified in practice.

Vose and Wright [5] have investigated the composition of selection and crossover
operators (the case of zero mutation). In that case, however, the limiting solution
can depend on an initial population. Some experimental results have been obtained

55



56 K. GRYGIEL

for the complete genetic algorithm (selection + mutation + crossover) [4], but there’s
still no general theory.
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