I Krajowa Konferencja
Algorytmy Ewolucyjne
Murzasichle, 12-15.06.1996

Faster Temporal Credit Assignment
in Learning Classifier Systems

Pawel Cichosz Jan J. Mulawka
Institute of Electronics Fundamentals
Warsaw University of Technology
Nowowiejska 15/19, 00-665 Warsaw, Poland
{cichosz, jml}@ipe.pw.edu.pl

Abstract

Classifier systems are genetics-based learning systems using the paradigm of
reinforcement learning. In the most challenging case of delayed reinforcement, it
involves a difficult temporal credit assignment problem. Standard classifier systems
solve this problem using the bucket brigade algorithm. In this paper we show how to
make the temporal credit assignment process faster by augmenting this algorithm
by some refinements borrowed from a related field of reinforcement learning algo-
rithms based on the methods of temporal differences (TD). These algorithms usually
converge significantly faster if they are used in combination with TD(A > 0). As a
natural consequence of the easily noticeable similarity between the bucket brigade
and TD(0), the BB(A) algorithm is derived, using the standard technique of eli-
gibility traces. The TTD(X,m) procedure, which eliminates eligibility traces and
implements an approximation of TD(A) in a computationally efficient way, has also
been ported to the context of classifier systems, yielding the TBB(A,m) algorithm.
The two resulting novel algorithms provide promising and, strangely enough, com-
pletely unexplored so far possibilities of making learning classifier systems learn
faster under the conditions of reinforcement delay.

1 Introduction

Classifier systems (CS, e.g., Booker, Goldberg, & Holland, 1989; Wilson, 1994) constitute
the most popular approach to genetics-based machine learning. Their essential idea is to
maintain and genetically improve a population of simple decision rules, called classifiers.
Each classifier is composed of a condition part and an action part. Whenever a classi-
fier’s condition matches the input information received by the system, called the input
message, its action is used to determine the system’s response. Learning in such systems
consists of two processes: evaluating the quality of each classifier, based on the observed
consequences of applying it to generate the system’s actions, and processing the popu-
lation genetically, to hopefully increase the number of successful (i.e., highly evaluated)
classifiers in subsequent generations. This paper focuses exclusively on the first of these
two processes, traditionally referred to as credit assignment.

Classifier systems belong to the family of reinforcement learning (RL) methods. At
each time step a reinforcement learning system observes the current input information
from its environment (termed input message in the CS community and environment state
elsewhere) and performs an action, selected according to its current decision policy. Then



Faster temporal credit assignment in learning classifiers systems

it receives a reinforcement value, also called a reward or a payoff, and a state transition
takes place in the environment (a new input message arrives). The system’s task is to
learn a decision policy that leads to the maximization of the rewards it receives in the
long term. A typical long-term performance measure is the expected discounted sum of
reinforcement:

E

Z'}/trtjl s (1)

where E is the expectation symbol, r; is the reinforcement value received at time ¢, and
v € [0,1] is a discount factor, which adjusts the relative significance of long-term rewards
versus short-term ones. To maximize this expression for any positive v, the learning system
must take into account the delayed consequences of its actions, by solving the temporal
credit assignment problem. Learning with such performance measures is called learning
from delayed rewards or delayed reinforcement learning.

Classifier systems solve the credit assignment problem using the bucket brigade algo-
rithm (e.g., Booker et al., 1989; Wilson, 1994), which will be presented in Section 2.1.
However, most of the current work on non-genetic approaches to reinforcement learning
uses temporal credit assignment algorithms based on Sutton’s temporal difference (TD)
methods (Sutton, 1988), such as AHC (Sutton, 1984) or Q-learning (Watkins, 1989). TD is
a class of prediction learning methods, parameterized by a recency factor A € [0, 1], which
is written TD()). Its reinforcement learning version will be described in Section 2.2.

Some close relationships between TD(0)-based algorithms and the bucket brigade algo-
rithm have been observed by several authors (e.g., Dorigo & Bersini, 1994; Wilson, 1994;
Cichosz, 1994), but, strangely enough, these observations have not led to clear practical
conclusions. To draw such conclusions, in this paper we port to the context of classifier
systems the idea of TD(A) for general A. Using positive A has been found to usually yield
a considerable learning speedup for AHC and Q-learning (e.g., Lin, 1993; Cichosz, 1995;
Cichosz & Mulawka, 1995), and thus may be expected to give similarly beneficial effects
for the bucket brigade.

2 Bucket Brigade and TD-Based Algorithms

There are many possible implementations of classifier systems and several versions of the
bucket brigade algorithm. Both simplifications and refinements have been proposed to the
“canonical” classifier system model (Booker et al., 1989). For this work a generic classifier
system based on ZCS (zeroth order CS) described by Wilson (1994) has been adopted,
with a version of the bucket brigade algorithm called the implicit bucket brigade. This
algorithm transfers credit among sequentially activated classifiers along temporal chains,
while the “canonical” version uses causal chains of classifiers for this purpose. Discussing
the exact nature of the simplifications assumed by ZCS-like systems in comparison to
the original CS is beyond the scope of this paper. We strongly believe, however, that the
novel algorithms we are going to present can be modified to fit other versions of classifier
systems.

As far as TD-based reinforcement learning algorithms are concerned, our description
will assume a common generic view previously used by Cichosz (1995). It can be easily
instantiated to obtain particular algorithms, including AHC and Q-learning.

LS

41



42 P. CicHOSZ, J. MULAWKA

2.1 The Bucket Brigade Algorithm

The bucket brigade algorithm assigns credit for the system’s outcomes to individual classi-
fiers by modifying their real-valued strengths. These strengths may be subsequently used
to determine their fitness for genetic processing. There is no need to assume any par-
ticular representation for classifier conditions and actions. The only important point is
that there is a match predicate defined for input messages and classifier conditions: for
any input message we can determine all the classifiers whose condition parts match the
message, forming the match set for it. The match set is then used to select the system’s
current action (e.g., the action supported by the majority of its members, but many other
selection mechanisms are possible).

The operation of a generic version of the (implicit) bucket brigade algorithm is pre-
sented in Figure 1. For a classifier ¢, s, denotes its strength, ¢, denotes its condition part,
and a. denotes its action part. We also write @, a¢, and r; to designate the input message,
the system’s action, and reward at time t.

At each time step ¢:
1. observe current input message ¢;
. M, := match_set(z;);
. a¢ = select_action (M );

. Ay = action_set (M, a;);

. observe immediate reward r;

2

3

4

5. perform action a;
6

7. s:=0;

8

. for each c € A; do
(a) s:=s+sc;
(b) s = s+ B(75 — se);
9. for each c € A;_; do

— S
Sc 1= S +ﬂ——m:’—1|‘

Figure 1: The implicit bucket brigade algorithm.

In Step 2 the match set for z; is formed, M;, which is then used to select an action
to execute. After action selection, another set of classifiers is formed, A; C My, called the
action set. It contains all the classifiers from M, which support the selected action a;. The
strengths of the members of this set are modified in Step 8, by subtracting from them
a fraction (determined by a learning rate factor ) of their previous value and adding
the same fraction of the current reward r;, divided by the number of elements in A;.
At the same time, the sum of their strengths (before these modifications) is computed
and stored in an auxiliary variable s. A fraction (again, determined by ) of this sum,
discounted by the discount factor «, is subsequently divided among the strengths of all
the classifiers constituting the previous action set, A;_;. It may be thus said that the total



Faster temporal credit assignment in learning classifiers systems

value subtracted from the strengths of the members of A, is delivered to the strengths
of their predecessors, the members of A,_; (hence the term ‘bucket brigade’). Because r;
and s both contribute to the increase of classifier strengths, we will call the former a
primary reinforcement and the latter a secondary reinforcement.

According to the presented algorithm, the strength of a classifier may be modified if
it matches the current input message and supports the action which has actually been
selected and executed in response to this message. It is increased (the classifier is positively
reinforced) if, informally, a large reward has been received after executing the action, or the
next input message activated good classifiers (with large strengths). Let s, (A, ) designate
the total strength of the classifiers in set Ay, at time ;. The effects of the bucket brigade
algorithm can be then more precisely written as follows:

sep1(Ar) == s:(Ar) 4 Ore + vse1(Arrr) — s:(A)]- (2)

This is of course a simplification which holds true only if A; N Ay = 0, but we find it
very insightful and sufficiently exact.

2.2 TD-Based Algorithms

The generic TD-based reinforcement learning rule may be written as
upclateﬁ(U, Tty Tt + vUt(:chl) - Ut(mt)), (3)

where U is the state utility function, assigning to each state z an estimate of the total
discounted reinforcement received starting in state z and following the current policy. In
particular, U(z;) is intended to predict the discounted sum of future rewards

o0

Il

fYkT'H—k’ A (4)
k=0

™
o+

called the TD return for time t. The update notation used in Equation 3 is supposed
to mean that the value of function U for argument z; should be adjusted using error
value A = ry + YU(@i41) — Us(zy), L.e., drawn towards Us(z) + A, to a degree controlled
by a learning rate parameter 3. Cichosz (1995) shows how particular RL algorithms can
be presented as instantiations of this generic formulation.

2.2.1 GENERAL A: ELIGIBILITY TRACES

Actually, Equation 3 corresponds to the simplest form of temporal difference methods,
TD(0). For general values of A, the TD()) update rule, applied to each state z at time
step t, is given by

updateﬁ(U, z, (ry + YUi(zeg1) — Ui(2))ex(t)), (5)

where
t

eo(t) = Y (YA Fxa(k) (6)
k=0
is the value of the eligibility trace (Sutton, 1984) for state « at time ¢, and x,(¢) is equal 1
if z = z, and 0 otherwise. Eligibility traces for all states are also incrementally updated
at each time step, according to the following trace update rule:

ea(t) 1= Peult = 1) + xel1), 7)
where e,(0) = x.(0) by definition.

43



44 P. CicHOsZ, J. MULAWKA

2.2.2 GENERAL A: TRUNCATED TEMPORAL DIFFERENCES

For positive A, one has to update at each time step predictions and eligibility traces for
all states, while for A = 0 Equation 5 reduces to Equation 3 and a prediction update is
required for one state only. This is why with this implementation using A > 0 is much
more computationally expensive than using A = 0. There is a simple technique proposed
by Cichosz (1995), called the TTD procedure (¢runcated temporal differences), which
makes it possible to use general A at low computational costs.

The technique of truncated temporal differences is based on the following definition
of truncated TD(A) returns:

m—2

A Z(’Y/\)k [Tt+k +(1 - A)Ut+k(3jt+k+1)} + ()" [er_l + 7Ut+m_1($t+m)]' (8)

k=0

We call z,"™ the m-step truncated TD(A) return, or the TTD(X\, m) return for time ¢. It
is an approximation of the TD(A) return, defined as

[ee]

7 = Z(’Y)\)k {7“t+k i —~ A)Ut+k($t+k+1)}7 (9)
k=0
or recursively as
z) =+ 7(/\z{\+1 + (1 = N)Ue(z41)). (10)

It can be shown (Cichosz, 1995) that the objectives of TD(A) learning could be achieved
inexpensively by updating at each time step the predicted utility of only one, current state,
according to:

updateﬁ(U, T, zt/\ — U(zy)). (11)

The TTD procedure approximates Equation 11, which cannot be implemented directly,
by
updateﬁ(U, Lt—m+1, Zr;\j:;—kl - Ut($t~m+1))' (12)

This can be implemented using an m-element experience buffer, containing the records
of i, as—k, ri—g, and Up_g(zy—p41) for all k=0,1,...,m — 1, where ¢ is the current
time step. The resulting algorithm is parameterized by A and m values, which is written
TTD(\, m).

The crucial operation of the T'TD procedure performed at each time step t is computing
the TTD return for the experience from time step ¢t —m + 1, z;\fﬁl“, on the basis of the
ri—ir and us—g values for £ =0,1,...,m — 1 stored in the experience buffer. The methods
of performing this computation will not be presented here due to lack of space, but the
interested reader can compare them to their bucket brigade counterparts given in Section 4

by referring to our work on TTD (Cichosz, 1995; Cichosz & Mulawka, 1995).

2.3 Bucket Brigade and TD(0): A Comparison

Note the apparent similarity of Equation 3 to Equation 2. If we assume a tabular repre-
sentation of U and rewrite the former as

Us1(ze) 1= Us(ze) + Blre + vUi(@e1) — Ue(4)], (13)



Faster temporal credit assignment in learning classifiers systems

the only difference is that Uy(z;) replaces s;(A;) and Uy(@i11) replaces si41(Asyq). This
basic observation is nothing original — it has been made before several times, e.g., by
Dorigo and Bersini (1994), Wilson (1994) or Cichosz (1994).

The analogy between the bucket brigade and TD(0) would be perfect if the former
used s;(Ayy1) instead of s;11(Avrr) in Equation 2. However, the difference should not be
very significant in practice, especially for relatively small 3, and we feel free to ignore it.
Consequently, we may say that the bucket brigade algorithm corresponds to TD(0) and
refer to it as BB(0). The reminder of this paper is devoted to deriving generalizations of
this algorithm that could be referred to as BB(A) and TBB(A, m).

3 The BB(A\) Algorithm

Having discovered the close similarity between the bucket brigade strength update rule
and the TD(0) prediction update rule, we are ready to look for a bucket brigade coun-
terpart of the TD(A) rule given by Equation 5, using eligibility traces updated according
to Equation 7. What seems most natural is to associate an eligibility trace with each
classifier ¢, designated by e.(t) at time ¢, discounted by a factor of yA at each time step
and incremented whenever ¢ belongs to the current action set, A;. The strength of each
classifier in the population, which is designated by C, would be then modified (reinforced)
to a degree determined by its eligibility trace. This idea is concretized by the algorithm
presented in Figure 2.

In Step 5 the eligibility traces of all classifiers are discounted by the yA factor and in
the next step the traces of the members of A; are incremented. Step 7 computes, also by
applying an incremental update operation, E(t) = > . ec(t). This value is subsequently
used in Step 12 to normalize the primary and secondary reinforcements, r; and vs. The
original bucket brigade algorithm used A; and A,_y, respectively, for this purpose.

Note that for A = 0 we have e.(t) =1 if ¢ € A; and e.(t) = 0 otherwise. Accordingly,
E(t) = |A;| and the BB()) algorithm reduces to the algorithm from Figure 1.

4 The TBB(A,m) Algorithm

Similarly as for TD()), eligibility traces are responsible for the increased computational
costs of BB()) in comparison to BB(0). Although this inefficiency may be often negligible,
because the bucket brigade algorithm is relatively costly anyway (mainly due to the
expense of creating the match set, which requires matching the current input message
against every classifier), we can get rid of eligibility traces using essentially the same idea
upon which the TTD procedure is based.

4.1 Truncated Bucket Brigade Returns
We begin with the definition of the TBB()\, m) return, the m-step truncated BB(\) return:

m—2

o = Z(”YWC [Tt+k+7(1 - /\)St+k+1(At+k+1)} + (A [Tt-i-m—l +8t4m(Arrm) |- (14)

k=0

Now we only need an algorithm that would implement the following modification of Equa-
tion 2:

S(At—m) e S(At~m) + ﬁ[Z;f\.in:@ - S(At—m)]a (15)

45



46 P. CicHOSZ, J. MULAWKA

At each time step ¢:
1. observe current input message x;;
2. M, := match_set(z:);
3. a; := select_action(M);
4. A, = action_set(M, a;);
5. for each c € C do
ec(t) 1= yAec(t — 1);
6. for each ¢ € A; do
eolt) = ealt) +1;
7. E(t) :=yAE({E — 1) + |A];
8. perform action a;
9. observe immediate reward r;
10. s :=0;
11. for each ¢ € A; do
8§ := 8+ S¢;
12. for each ¢ € C do
(a) sc:=sc+ B(ghy — sc)ec(t);
(b) sc:=sc+ Bppomyee(t—1).

Figure 2: The BB()\) algorithm.

intended to be a bucket brigade counterpart of Equation 12. Time step subscripts are
omitted from s values in this equation, because the update which it describes will not be
performed directly. Indeed, we want the TBB algorithm to be as similar to the original
bucket brigade algorithm as possible. In particular, TBB(0, 1) should be exactly equivalent
to BB(0). That is why the above update operation will be implemented in two stages,
described by the following two update rules, written using two different time variables for
the sake of clarity:

st41(Ar ) 1= 86, (Ayy ) + Blrey, — 50, (Ay,)] (16)

at time ¢1, and

5t2+1(At2—m) = StQ(Atz—m) + 5[232’371 - th—m] (17)

at timety = t; + m. Thus, at time ¢ the members of both A; and A;_,, have their strengths
updated. On the other hand, the strengths of the classifiers in A;_,, are updated twice,
at time ¢ — m and at time ¢. Under an unrealistic simplifying assumption that all action
sets between time ¢t — m and ¢ do not contain any common classifier, we could write the
joint effects of these two updates as

St41(Atom ) 1= Stmm (Ao ) + ﬁ[zi\—’?; = St-m(Ae—m)]. (18)



Faster temporal credit assignment in learning classifiers systems 47

4.2 The TBB Procedure

To implement this idea, an (m + 1)-element experience buffer will be used, storing the
records of Ay_g, ri—, and s;—x(A_y) for all £ =0,1,...,m, where ¢ is the current time
step. The elements of such records will be referred to as Ay, rp, and sp, respectively,
which can be achieved by shifting appropriately the buffer’s indices on each time tick. The
reason why the buffer is 1 element longer than for TTD is that, while we can compute
Ui(zi41) as soon as x441 can be observed, $t41(Agq1) is unknown until an action asy is
selected. Consequently, sy stores s;_x(A;_) instead of St—k(At—g+1) and we need m + 1
buffer elements if we want to use m-step truncated returns.

The resulting TBB(A,m) algorithm is presented in Figure 3. For simplicity reasons
the initial m time steps (when the experience buffer is not completely filled) are not
covered by this algorithm. They are also ignored below in the discussion of the TBB
return computation.

At each time step t:
1. observe current input message z;
. M; := match_set(z:);
. ap := select_action (M );

. Ay = action_set(My, as); Ay = Ay;

2

3

4

5. perform action ay;

6. observe immediate reward r;; o] 1= 1¢;
7. spo) := 0;

8

. for each ¢ € Ay do
(a) s[o] := s[o] + Sc;
(b) sc 1= se + B — se);
9. z:=tbb_return(0,m);
10. for each ¢ € Ay, do

zZ—=T
So = 8.+ ﬁmum[m']n! :

11. shift the indices of the experience buffer.

Figure 3: The TBB(A, m) algorithm.

The operation of Step 9, written as tbb_return(0,m), computes the TBB(A,m) re-
turn for time ¢ — m, z7, using the values of rpy for k=1,2,...,m and sy for
k=0,1,...,m —1. This TBB return is then used to reinforce the classifiers in Ap,;.
It is straightforward to verify that for A = 0 and m = 1 the algorithm reduces to the very
same BB(0) algorithm as presented in Figure 1.

4.3 TBB Return Computation

The most important thing to know about the TBB algorithm is how TBB returns are
computed. Two methods existing for TTD returns can be easily adopted for this purpose.



48 P. CIicHOSZ, J. MULAWKA

The simpler, but less efficient iterative method is based on the repeated application of
Equation 10. The bucket brigade version of this method may be written as follows:

L.z = sq;
2. fork=1,2,...,m do
z:=rp +y(Az 4+ (1= Nsp—1))-

To see how the same computation can be performed incrementally, we rewrite the
definition of the TBB return for time ¢ in the following form:

g e SRR 4 TR (19)
where
m—1
Sf/\’m = Z(’Y/\)k {WM + (1 - >\>St+k+1(At+k+1) ) (20)
k=0
TP = (YA stpm(Avym). (21)

The T>™ term can be computed directly in constant time. For the S*™ it is easy to verify
that

1

)\,m . - 1/\,m _ 3 . §
Siin = 2 {St {"t +~(1 /\)St—i—l(At—f-l)}

+ (yA)™ [Tter F (L = A)‘St—l—m-{-l(At—{—m-i—l)} } (22)

This observation leads to the following incremental algorithm for computing z;\_’ﬁi in con-
stant time for arbitrary m:

1. 8= 5|8 = (rpntn) + (1 = A)smy) + (YA)™ (ry + (1 — )\)3[0])];
2. T = (yA)™sq;
3. z:=5+4T,

where 7, 41] is an auxiliary variable storing the value of ;) from the previous time step.
The existing TTD literature (Cichosz, 1995; Cichosz & Mulawka, 1995) contains a more
elaborated discussion of the original TTD return computation methods, which applies to
TBB returns as well.

5 Conclusion

This paper has shown how the ideas studied in the area of TD-based reinforcement learning
algorithms can be ported to the related, but independently developed area of classifier
systems. Two simple techniques, eligibility traces and truncated returns, that allow one
to use TD(A) for general A, have been incorporated into the bucket brigade algorithm,
yielding the BB(A) and TBB(A, m) algorithms. Our deep surprise that the apparent and
widely known similarity between the bucket brigade algorithm and TD(0) has never been
practically exploited before was the major motivation for this research.



Faster temporal credit assignment in learning classifiers systems 49

Using positive A with TD-based RL algorithms has been found to usually yield a
significant learning speedup. We expect the same to occur for classifier systems. It seems
unquestionable that using either of the two algorithms proposed in this paper instead
of the standard BB(0) algorithm will result in faster learning for delayed reinforcement
tasks. However, it might be questionable whether the scale of this improvement would
be equally impressive as for AHC or Q-learning (e.g., Lin, 1993; Cichosz, 1995; Cichosz
& Mulawka, 1995). It certainly requires a more thorough theoretical analysis and an
empirical verification on a variety of tasks, which appears to the most important field for
future work on BB(A) and TBB(A,m).

Another interesting question that should be addressed by future research is whether
TD(A)-like extensions are also possible with other versions of the bucket brigade algorithm.
While we can probably say ‘yes’ in advance for any versions of the implicit bucket brigade
algorithm, where credit is transferred along temporal chains, it is not so evident with
the more complex “canonical” bucket brigade (Booker et al., 1989), using causal rather
than temporal chains. We believe that answers to all the remaining questions would be
valuable contributions to both the CS and TD research.

References

Booker, L. B., Goldberg, D. E., & Holland, J. H. (1989). Classifier systems and genetic
algorithms. Artificial Intelligence, 40, 235-383.

Cichosz, P. (1994). Reinforcement learning algorithms based on the methods of temporal
differences. Master’s thesis, Institute of Computer Science, Warsaw University of
Technology.

Cichosz, P. (1995). Truncating temporal differences: On the efficient implementation of
TD(A) for reinforcement learning. Journal of Artificial Intelligence Research, 2,
287-318.

Cichosz, P., & Mulawka, J. J. (1995). Fast and efficient reinforcement learning with trun-
cated temporal differences. In Proceedings of the Twelfth International Conference

on Machine Learning (ML-95). Morgan Kaufmann.

Dorigo, M., & Bersini, H. (1994). A comparison of Q-learning and classifier systems. In
Proceedings of From Animals to Animats, the Third International Conference on

Simulation of Adaptive Behavior (SAB-94).

Lin, L.-J. (1993). Reinforcement Learning for Robots Using Neural Networks. Ph.D.
thesis, School of Computer Science, Carnegie-Mellon University.

Sutton, R. S. (1984). Temporal Credit Assignment in Reinforcement Learning. Ph.D. the-
sis, Department of Computer and Information Science, University of Massachusetts.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine
Learning, 3, 9-44.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. Ph.D. thesis, King’s College,
Cambridge.

Wilson, S. W. (1994). ZCS: A zeroth order classifier system. Evolutionary Computation,
2, 1=18.



