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ABSTRACT

In this paper, a hybrid genetic algorithm for finding Pareto-optimal solutions in multiobjective optimization
problems of dynamic modular program assignments is presented. It operates on the population of artificial
neural networks generating suboptimal solutions for only one criterion. Initial states of designed neural
networks are changed by the genetic algorithm. Finally, Hopfield’s analog neural network population for
finding Pareto-suboptimal solutions in a simple multiobjective optimization problem for resource dynamic
assignments in distributed computer networks have been proposed.

1. INTRODUCTION

In distributed computing system a modular program must have its modules assigned among
the processors so as to avoid excessive interprocessor communication while taking
advantage of specific efficiencies of some processors in executing some program modules.
It makes sense to change assignments dynamically to take advantage of local behavior of
programs and the relatively infrequent changes in program locality. Fortunately, the
dynamic problem is no harder than the static one, except for the need to solve several static
assignment problems instead of a single one.

Several multiobjective optimization problems of static module assignments are NP-
hard [1,13]. A promising approach for solving these problems seems genetic algorithms
(GA). Genetic algorithms are the alternative approach compare to standard operational
research methods [15], simulated annealing [11], Hopfield’s neural networks [9], the
Boltzman machine [16], and elastic nets [20]. Holland [10] developed GA and its
theoretical foundation. Although there are many variants of the basic genetic algorithms
[4,14,17], the fundamental underlying mechanism operates on a population of individuals, is
relatively standard. Goldberg and Lingle [8] suggested a crossover operator called the
partially mapped crossover”. Bac and Perov [2] proposed another crossover operator
created by the non-Abel group theory.

Schaffer [18] considered GA for solving multiobjective optimization problems by an
vector evaluated genetic algorithm. Multiobjective learning by GA is discussed in [19].
Additionally, an overview of evolutionary algorithms for multiobjective optimization
problems is presented by Fonseca and Flaming [6].

In this paper, genetic approach for solving multiobjective optimization problems are
presented. This genetic algorithm combining with Hopfield’s analog neural networks
(HANN) is considered. Several elements of HANN can be transformed by the genetic
algorithm. For given HANN presenting an suboptimal solution in an equilibrium point is
possible to improve an accuracy of obtained solutions by reproduction, crossover, and
mutation. Results of an evolution of HANN initial states are presented.
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2. GENETIC ALGORITHMS

Holland [10] noted that reproduction in conjunction with the pressure of natural selection
has developed species remarkably well adapted to their environment. The crossover
operator as the discovery mechanism played the base role in Holland’s genetic algorithm.
The basic relatively standard genetic algorithm operates on a population of individuals and
consists of the following operations. There are an evaluation of individual fitness, a
formulation of a gene pool, and recombination with mutation.

Goldberg and Lingle [8] suggested a crossover operator, which leads to an efficient
solution of TSP, as they believed. It is called,, the partially mapped crossover” (PMX),
because one randomly chosen gene vector part of parents is mapped into the gene vector
part of offspring with the modification by the exchanging of genes between parents.
Formally, Liepins and Hilliard specified the genetic algorithm [14]. The more complicated
genetic algorithm has been proposed by Bac and Perov [2]. Details of the random
replication, selection, crossover, and mutation in [7] are described. It is easy for software
implementation and can be used for solving several difficult optimization problems.

Genetic algorithms and artificial neural networks are separately used for solving
many optimization problems. Tank and Hopfield considered the "neural" approach for
solving the Traveling Salesman Problem (TSP) [12]. Sun and Fu presented the hybrid
neural network model consisted of multiprocessor systems for finding solutions of TSP
and successfully discovers solutions to the Hamiltonian Cycle [20]. Finally, Hopfield’s
analog neural networks for solving two similar multiobjective optimization problems in [3]
have been proposed. From the other hand, Schaffer [18] proposed to use for solving
multiobjective optimization problems, a genetic approach.

The real temptation is a combination between the genetic algorithm and the neural
networks population. The main purpose of it is the improving of an accuracy of obtained
solutions. For giving more details of this new approach [10,20] neural networks for finding
suboptimal solutions with respect to only one criterion are considered.

3. SEVERAL HANNs FOR MULTIOBJECTIVE OPTIMIZATION PROBLEMS

It is possible to use one of known neural methods for minimization problem with only one
criterion to solve the multiobjective optimization problem. The main question is how the
problem with many criteria lead to the problem with only one criterion. The most popular
nonnegative convex method for finding Pareto-optimal solutions is preferred [3].
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where

X - a feasible solution set,

Y=F(X)cR" - a set of vector evaluations,

Y=[Y1,....¥n-...yn]" - a point in the set Y,

a=[ot1,....,0l,...,0n] " - a vector of nonnegative convex combination coefficients.
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The other method for scalarization of multiobjective problems in [1] are described.
It is possible to use artificial neural networks for minimization of nonnegative convex
combination of particular functions. For linear and quadratic nonnegative convex
combination functions, Hopfield's analog networks can be considered. Then genetic
algorithm can operate on the different parameters of given optimizing neural networks. For
instance, external inputs or synaptic weights can be changed. Moreover, gain coefficients in
activation functions, types of activation function or passive inhibitor coefficients can be
modified, too. But, we want to considered neural population behaves more intelligent than
only competitive populations in simple genetic algorithms. That is why, members of this
populations are equipped in poor intelligent dedicated for finding suboptimal solutions in
one criterion sense.

We can consider N network sorts for minimization each criterion with respect to
constraints and K network sorts for implementation of several known scalarization methods
leading from multiobjective problems to minimization problems. Each network category has
N(j) representatives, where j denotes the number of network category. All representatives
are processed by the genetic algorithm. We assume, that all networks are Hopfield’s analog
networks.

For finding one local efficient (Pareto-suboptimal) solution of multiobjective
optimization problem, we can use the Hopfield's ANN called PHANN. The outputs of
neurons represent decision variables x,, (or related dummy variables) or nonnegative convex
parameters o, (or related dummy variables B,,). PHANN can represent one Pareto-optimal

solution in an equilibrium point. PHANN satisfies the Cohen-Grossberg's conditions of a
global stability [9]. In the analog model of Hopfield's ANN, the behavior of neurons is
described by the differential equations [12]:

M
du,
m_ zwimgi () +1m 2
v g

where
MNm - passive inhibitor coefficient for neuron xy ;

Iy - external input to the neuron Xy, .
The synaptic weights Wi, in a connection between neurons x; and x,, are symmetric.

The activation function is a sigmoid function gy, (uy,) = E[1+tanh(}/um)] , where vy

denotes the gain coefficient.

If external inputs are constant over time, then Hopfield's ANN with feasible
parameters reaches the equilibrium point. The energetic function for PHANN implementing
nonnegative convex combination method are constructed as below:

B(x,a) =) o,F,(x)+ BZ h, (x) 3)

where
B- a penalty parameter for no satisfaction of constraints,
hy(x) - a nonnegative penalty function for no satisfaction Ith constraint for solution x.

We can calculate the particular weights and particular external inputs for the feasible
solutions as shown in [3]. Moreover, passive inhibitor coefficients and gain parameters are
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found by simulation methods [3]. Then networks can work, if initial states of activation

levels are given.

On the fig. 1 the minimization trajectory of energy function and the trajectory of the 1st
M

neuron activation level state for the particular HANN satisfied the constraint me =k is
m=1

presented. Network HANN can be a subnetwork of network PHANN. These results have

been obtained by the simulation of differentiable equations (1) for 50 neurons (M=50) and

k=3. Synaptic weights are equal to -2, and external inputs are equal to 2k-1 [3]. The gain

parameter v in activation functions is equal to 10. The length of integrity step is assumed as

0.01. The started input activation level state vector is equal to [50,49,48,47,...,2,1]T,
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Fig. 1. Simulation of HANN prepared for the constraint Z Wiy =1
m=1

Increasing of gain coefficients in activation functions accelerates the convergence of
network to the equilibrium point. For the gain parameter y=100 in activation functions and
for the length of integrity step is assumed as 0.2 presented HANN can obtain the

equilibrium point only after 3 steps. Even for software implementation of HANN above
M

results are very promising. Networks constructed for performing the constraint me =k
m=1
can be denoted HANN/k/M.

4. GENETIC ALGORITHM USING PHANN

Now, the new genetic algorithm with using PHANN with given parameters is presented.

1. 1=1
2. Set the number of maximum iterations I.
3. Choose a PHANN population size 2K.
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4. Randomly generate the initial states in the PHANN population.

5. Local neural optimization in the population of PHANN.

6. Evaluate the objective function Q (nonnegative convex combination function) for each
PHANN. ,

7. Choose the PHANN x* with the minimum of the objective function value Q*.

8. Crossover K randomly chosen pairs of PHANN initial states from networks population
to receive K pairs of offspring by the Goldberg operator PMX.

9. Mutate randomly chosen individuals of the PHANN population with the low probability
Pm-

10. Local neural optimization in the population of PHANN.

11. Evaluate the objective function Q (nonnegative convex combination function) for each
PHANN.

12. Choose the PHANN x** with the minimum of the objective function value Q**.

13. If x** dominates x* in Pareto sense, then i:=i+1, otherwise i:=0.

14. If i>1 then STOP. Otherwise go to the step 8.

Initial states of activation levels in artificial neural networks are very important
factors for obtaining of optimal solutions. Moreover, they influence on the convergence
speed of network to an equilibrium point. On the fig. 2 we can observe examples of several
convergence a network HANN/1/50 for different values of initial state vector u.
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Fig. 2. Convergences of HANN/1/50 for different initial states:
a) A=[50, 49, ..., 2, 1], B=[25,24,23,...,-23, -24",
b) C=[0, -1,..., -48, -49]", D=[1.25, -0.76, -0.75,..., -1.23, -1.24]"

Similarly to the gradients minimization methods, results of artificial neural networks are
related with the value of initial point. This is a main reason for taking these as a subject of
GA operations.
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5. AN EXAMPLE OF GENETIC-NEURAL METHODS IN RESOURCE DYNAMIC
ALLOCATION PROBLEMS

Let us consider an simple example of static resource allocation problem in the
multiobjective optimization formulation ((A/,F,P), where

1) X - a feasible solutions set

X = {xeB*" x=(xﬁ,...,xfi,...,x‘\?l,xfl,...,xg,.A.,X;’J)T;
2 —
dxg=1  v=1V; X xi=1 =12} 4)
i=1

2) F - a quality criterion
F: X > R, F=[F1(0),F0] T xe

J V 2 vV VvV 2 2 J
B0 = YV + Y N e x(-x0) , B®=Y Yepp O
j=1v=1 i=1 v=1 u=1 i=1 i=1j=1
3) P - a Pareto relationship [1].

Above static problem is solved several times during program performing. Moreover,
we assume that execution times t,; of module (operation) m, on processor T; are given. In
two nodes have to be installed two processors. There is one processor in one node.
Processors can perform operations with the different speed. So, we distinguish several sorts
of processors 7; with the given cost k;. If modules are processed in different nodes, they can
require additional given times 1., to satisfy intermodule references.

Decision variables are x} and x7. The variable xyj is equal to 1, if the module my is

assigned to the node w;. Similarly, the variable x7 is equal to 1, if the processor m; is

assigned to the node w;. In other cases decision variables are equal to zero. The Pareto
relationship forces to minimize both the time of execution assigned operations F; and the
cost of assigned processors F». There is a general conflict between minimization the time of
module assignment and the cost of processor assignment, because processors with better
performance abilities are more expensive. Additionally, some modules can use several
properties of special processors to decrease the time of a run operation. Then
exceptionally, the run time for a given module on the cheaper processor can be shorter then
the run time for the more expensive one.

For solving considered problem we can use several techniques based on the Stone’s
method, gradient minimization methods, Hopfield’s analog networks, simulated annealing
or genetic algorithms. On the fig. 3 an example of a criterion space Y=F(_X) is presented

for the following parameters:

V=4, ]=3, 1=2,
25 13 40 0100
1,4 89 20 0010
T: , T = 5
1,2 52 3,0 000 1
22 11 20 0000
=[1,2,3]".

For above particular assumptions the number of decision variables is equal to
M=I(V+])=14. There are 79 points in criterion space Y. The set }~ has been generated by

the modified greedy search method. From the permutations set number 2'*=16384 only 256
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solutions has been chosen by the directional evaluation. Set & of feasible solutions

consists of 147 points.

Moreover, on the fig. 3 results of a simple genetic algorithm SGA [7] are presented.
Non-dominated points for each population are connected by a dashed line with the number
of population. SGA used 67 new populations to obtain two suboptimal in Pareto sense
solutions presented as points C and D. Each population consisted of 200 solutions. A
probability of crossovering for solutions from a gene pool was taken p.=0,95. A mutation
probability for one bit was chosen p,=0,001. A distribution of solutions in an initial
population was uniform. Reached solutions are good, because they are feasible and close to
Pareto-optimal solutions. However, Pareto-optimal solutions should be preferred. So, we
can use the genetic-neural algorithm GNA to eliminate above disadvantage.
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Fig. 3. An example of a criterion space Y/

Neural-genetic algorithm GNA is very efficient for solving such optimization problems. In
the considered example it found two Pareto-optimal solutions with the evaluations A and B
by generating only 12 new populations. Each population consisted of 50 artificial neural
networks PHANN dedicated for solving considered optimization problem. GNA changed
values of activation levels. So, we can consider GNA as a simply genetic algorithm SGA
operated on the initial activation levels of a system consisted of 50 isolated neural networks.
After selection, crossover, and mutation states of initial activation levels are changed. Then
50 dedicated neural networks obtain their equilibrium points. Afterwards, fitness function
values are calculated and new population of initial activation levels. The main advantage of
this approach is improving solutions by neural networks. If neural networks are
implemented as VLSI chips, then time of obtaining equilibrium points can be approximately
equal to one computer instruction time. Even for simulation of networks by program
environment based on computers IBM PC presented GNA method is very powerful.
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6. CONCLUDING REMARKS

In this paper, genetic-neural methods for solving dynamic modular program allocation
problem have been proposed. PHANN based on nonnegative convex method algorithm for
finding Pareto-optimal solution has been presented. Initial experimental results confirm, that
genetic-neural algorithms GNA are very useful for solving optimization problems, and
especially for solving multiobjective optimization problems.
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