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ABSTRACT: We present an idea of a hybrid optimization algorithm for multidimensional problems
with many local minima. We are motivated by the problem of identification of parameters in
the Swartzendruber formula. This formula describes the process of prelinear water filtration through
cohesive soils. The problem (formulated as an optimal control one) seems to be an example of such
multidimensional problem with many local minima. The proposed hybrid algorithm consists of two
components: a genetic method and the Torn global optimization method. The components are executed
alternately, forming a special kind of a "pulsating” algorithm with diminishing and growing of the arca
of searches.

The monitoring of the earthen dam stability has the great engineering importance.
Determination and updating of hydraulic parameters of the central protection screen (see Fig.1)
which decides of the dam tightness, play the crucial role in this process. Protection screens are
usually made of cohesive soils, such as clays and silts.

The mathematical model of the filtration in the full saturated cohesive soil may be
completed as follows:
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The filtration velocity v 1s described by the modified Swartzendruber formula [4]:
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Fig. 1The typical cross section through the earthen dam

where £, is the piesometric pressure, vdenotes the filtration velocity in the region QcR’,
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a(t)e(x) is the elastic soil capacity, n is the unit outlet normal to Q,, g, s, and A, represent

respectively, the boundary inflow, the fixed boundary pressure and the initial pressure inQ).
Moreover,

plt.x) = ({1,(1.%)}, B(5.x))

_ for (t,x) eQ 3)
p(t, x) = (M(z‘,x), so(t,x), @(l,x))

are hydraulic parameter functions which defines the local permeability of the soil, according to

the formula (2) (see [4,5] for details).

In the case of earthen dam protection screens, the initial value of p(O,-) may be
evaluated by laboratory tests which can be made only during the construction. Identification or
updating of p(t,~), t >0 may be done by the proper inverse problem solution based on
permanent measurements of the piesometric height distribution 4, in the wall’s interior.

The above inverse problem can be formulated as the optimal control one (cf. [1]).

inf {7(C(h,))+G(»)} @

peP

where h, satisfies the model (1)-(3). Here C is the observation operator and 7 denotes

the compact set of a metric space of admissible parameter functions.

Both, state equations (1)-(3) and functional (4 ) are replaced by their discrete versions
using mixed Finite Element/Finite Difference technology (see [1,2,5,7]) in order to provide
the effective computations. Mathematical results concerning existence of the above problems
(1)-(3), (4) and their discrete versions have been proved in [2,4,5] assuming the regular class
of functionals 7 and G. The particular form of (4) which have been used by numerical tests is

the following:
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2 (’,,xx)) +|p-p.] (5)
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The first part of the right hand side of (5) represents the weighted distance between
the observed (%,) and simulated (h,) piesometric pressures in piesometer locations

x; €Q,i=1,..,N and in time instances ¢, e[O, T ], j=1,...,K . The second is the penalty which

grows if the parameter vector is far from the desired one p,. The weighting function w is set

rather heuristic and such that the first expression strongly dominates over the second one. The
second expression plays also the role of the regularisation factor.

The mathematical results in [1,2] and the current numerical experience (see [1,7]) lead
to the conclusion that the inverse problem under consideration has multiple solutions, then it is
ill posed one. The next remark which comes rather from a heuristic consideration is that
the solutions lie in several distant subregions, and the solution points are placed rather dense in
each subregion.

The exemplary results which exhibit that the considered inverse problem is ill posed
because of many local minima are presented below. The results concern the case of one
dimensional flow under a testing embankment (the data were obtained from the Warsaw
Agricultural University) with N =3 and K =1. The dimension of 2 is 9. The vector p consists

of 9 components M, ,8,,s,,, i=1,...,.3. We denote M, = M, -10” [m/s].

Example 1 Example 2 Example 3

M ; 61’ SOi MI 91' SOi M. 91’ SOi

i=1 0.362 |0.830 |2.700 [l0.371 ]0.800 |3.214 [0.298 |0.708 |2.269
=2 0.462 |0.872 [2.842 0.394 |0.801 |2.565 [0.441 |0.851 [2.778
i=3 6.189 10.800 [2.502 [6.253 |0.801 |2482 [6.230 |0.801 |2.501
Final value 2=72.10" 7=2.0-10" 7=1.1.10"
of 7

The values obtained by laboratory tests (during construction of the embankment) are:
M =(0.38, 0.45, 6.20), 0 =(0.86, 0.86, 0.80), 5,=(2.8, 2.8, 2.5).

Table 1 Exemplary results of the hydraulic parameters identification

The standard variable metric method Migrad (from MINUIT - CERN library) was
applied. Three local minima were found. The situation becomes worse if K> 1, N> 3 or we
consider the two or three dimensional flow.

The numerical tests exhibit that the applied variable metric method stops in many points
of the solution domain (with or without convergence of Migrad). Some of these points can
correspond to local minima, some may follow from bad conditioning. The obtained results
strongly depend on starting points (see [1,7]).

Although we can improve the conditions of the functional (4) (by e.g. enlarging the
penalty () in order to obtain the unique solution, there is more interesting to find as much
regions of solutions as possible, and then the local minimizers therein. The process of finding
multiple solutions in large multidimensional set 2 in reasonable time needs a special kind
of optimization algorithms. Some proposals of such algorithms were given in [8] and they
concerned stabilisation (less dependence of starting points) via hierarchic optimization and also
parallelisation and distribution of computations in a computer network. Here we propose to
involve genetic methods to the optimization algorithm.
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The concept of the hybrid algorithm for finding local minima

One of methods that can be used to deal with many local minima is to review large areas
of the domain, by running many local optimization processes in various parts of it. The search
can be fastened by a proper coarse grain parallelisation: a basic variant of such an algorithm
(called MSP - see [8]) consists in executing parallely many scalar nonlinear programming
processes starting from various points. This method in some way can also deal with the bad
conditioning. However, the MSP has the following disadvantage: when the dimension
of the optimization task is big (say tens or hundreds or more), the domain of searches becomes
too large even for parallel and distributed computations. Referring to the considered identifi-
cation problem, if the dimension of 2 is m and we would like to have / values for each
component of the parameters vector p, then the total number of the initial starting points is
equal to /”. Searching through millions of points using the MSP becomes ineffective even if
we distribute computations in a small (tens of workstations) network. Some preliminary steps
to recognize those parts of the domain, where existing of minima is more probable would be
desired.

We propose to apply a hybrid algorithm in order to determine these areas. The two most
important components of it are an evolution algorithm and the Térn global optimization
method [9,10].

The idea of the Térn method is based on the observation, that when we start local
optimization processes (standard methods of the convex analysis) from many points (called
after Torn the global points), we often obtain the same local minimum. Instead of wasting time
for exact computations from each starting point, we can compute only several iterations of a
very simple optimization method. Obtained points are called the intermediate points. A set
of intermediate points that belong to one local minimum is called a cluster. For further exact
computations, we can choose one or two points from each cluster.

However, it may happen, that a cluster in fact contains more than one local minimum.
Thus, the process of finding intermediate points from the global ones can be recurrent. When
we choose new global points in the recognized cluster and proceed the Térn method once
again, then we can obtain new clusters.

The stop criterion should be complex:

e No new clusters in the consecutive Toérn step were found: then exact computations
(standard methods of convex analysis together with proper standard stop criteria)
from one or two points in each cluster should be executed.

e The distances between clusters are smaller than a certain threshold.

e The maximum time of computations (or the maximum number of function
evaluations) was exceeded.

An important question in the Térn method is how to determine clusters. One of possible

ways is to consider the density p of intermediate points. In order to recognize a cluster we

choose a seed point x, and then scan 2 in a hyperspherical neighbourhood S(r) of x, with
aradius 7. The radius is increased while p> p, where p stands for a threshold and p can be

computed as:
number of intermediate points

r(r) ’
V(r) is the capacity of S(r). This method is described in [10]. Another method of clusters
determination is to divide 2 into hypercubes (that will create a grid) and to count number
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of intermediate points in each hypercube. The grid can be condensed in proper parts of 2.
The more accurate description of this problem is beyond our considerations in this paper.

The disadvantage of the Torn method is that it can detect only these m+1 (m stands for
the number of parameters to be found) dimensional “valleys”, in which we have chosen global
points. The method has not the property of crossing local “crests”. Therefore we propose to
apply the Torn method together with some steps of an evolution algorithm. Evolution
algorithms [3] in general are able to cross such “crests”. Usually they give a set of points
(population) that can form clusters like in the Torn method. Clusters can be recognized by the
same techniques as previously described. We propose to use the two mentioned methods
alternately: the first stage consists in a genetic algorithm, the second stage in the Torn method,
the third stage consists again in a genetic algorithm.

The flow diagram of the hybrid optimization algorithm is presented on Figure 2.

STAGE 1: (Genetic method)
Preliminary determination of
“promising” areas

Choose an initial population of n; points from 2. l
Perform k; evolution steps
. l P g In each cluster:
: : Perform “exact” computations from two
Determine clusters : points in the cluster using standard
; methods of convex analysis

........................................................................

........................................................................

I : Print out the information about
minimizers and clusters

. [ Choose global points in the cluster

| Find intermediate points |
|

Determine new clusters from the intermediate | | |\
: points ; STAGE 2: (Torn method)
i _________________________________ The area of searches
diminishes

Stop criterion 1: No new clusters were found or
they are sufficiently close to each other

FALSE

Stop criterion 2: TRUE
The maximum time of computations or the
maximum number of function evaluations or
the maximum number of clusters was exceeded

Print out information about the reason
of the stop. Print out information about
status of optimization (already found
clusters)

........................................................................

STAGE 3: (Genetic method)
A trial of detection new not
discovered yet “valleys”.

l The area of serches can grow.

Perform k; evolution steps

i |Choose 7, points near the border of the cluster. /——-

: |Determine clusters,
i |Remember new clusters (if any)

Fig. 2 The block diagram of the proposed hybrid algorithm
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We expect, that the first stage of the proposed method will result in a rough determina-
tion of these parts of the domain, where there can exist one or more local minima (m + 1
dimensional ”valleys”). The property of implicit strong parallelism of a genetic algorithm gives
a chance that the multidimensional domain will be searched relatively quickly.

In the next stage of the algorithm - the Térn method - we would like to determine more
precisely internal “valleys” in the previously recognized areas. The possible greater precision
follows from the fact that the more accurate (than genetic ones) methods of conventional
nonlinear programming are used. The searched area is diminished in this stage.

However, the second stage does not guarantee that all “internal valleys” will be found.
When we want to find as much valleys as possible, we can use genetic method once again. This
is the third stage of the proposed algorithm. This time the initial population is generated near
the borders of the recognized valleys. After some evolution iterations we can check if the new
generations concentrate in “old” valleys, or they tend to another, not discovered yet ones. This
stage can result in the growth of the searched area.

The idea of the proposed algorithm is illustrated also in Figure 3. The situation after
the stage 1 is depicted in Figure 3A. Figure 3B presents stages 2 and 3.

A B (zoom)

New clusters after stage 3 o

Clusters after the stage 1

The domain P

The same cluster

points obtained after the stage 1
starting points for the Torn method
points obtained after the stage 2
O points obtained after the stage 3

Clusters after 2nd stage

X

Fig. 3 Tllustration of the three stages of the proposed algorithm

The second and third stages can be executed alternately as long as new “sub-valleys” are
discovered.

The genetic process to be employed as a tool for optimization consists in breeding
a population of individuals which represent a set of points in the domain 2. The starting
population evolves by standard genetic mechanisms as reproduction with crossover, mutation
and selection.
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The gene code Q of a single individual can be considered as the catenation ¢q,q,...q,,.
Parts g;, i=1,...,m result from an integer coding of a single coordinate of a point in 2. Such
coding is obtained after covering the domain 2 by an arbitrary dense m-dimensional regular
mesh. The i-th coordinate of a point p € 2 is represented by g;, which is the integer number of
this grid cell that contains p, counted in the i-th versor direction. The binary representation of
g is used in genetic operations on the individual p. The approach presented above is the classic
one (see [3]), however we do not exclude future refinements.

Final remarks

We expect two main advantages of the application of the genetic method to the con-
sidered identification problem.

The first one is relatively quick preliminary determination - due to strong implicit and
possibly explicit parallelism (in the sense of Goldberg [3]) of evolution algorithms - of these
parts of 2 in which local minima can exist.

The second advantage is connected with the property of crossing local “crests” that gives
a chance to obtain more local minima. Moreover, approaching to minima from many sides
(many points in a cluster) together with the statistic character of genetic methods gives also a
chance to overcome (at least partially) bad conditioning of the optimization task.

We suggest that the proposed method can be also applied for other problems with many
local minima. An important class of such problems - which have the great significance - are
molecular configuration problems. They have hundreds or thousands parameters and typically
many local minima with function values very close to the global one. Moreover local minima
often have small basins of attraction [6]. It seems, that the described “pulsating” hybrid method
can be helpful in these cases.

This paper contains only the idea of the hybrid algorithm, which is not complete and
tested yet. There are many questions, that are still open. The proper investigations will be
carried on. Also the mathematical analysis of properties of the proposed algorithm is out of our
consideration here. We suggest, that such analysis should be provided basing on statistic
methods.
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