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ABSTRACT

We introduce a novel approach to Evolutionary Strategies, in which the population size varies
over time. This process is controlled by the stage of the optimisation and helps keep its
exploration-exploitation balance. 'We use an average value of standard deviation of Gaussian
distribution as an indicator of stage. The method leads to a reduction of the computational
effort needed to achieve similar results by comparable methods. Moreover our algorithm is
more robust than in the standard case.

INTRODUCTION

In the field of evolutionary algorithms there are 2 methods useful in global optimisation
problems: genetic algorithms (GA) and evolutlonary strategles (ES). They are successfully
used especially in cases, when knowledge about the problem is scare and the problem is
difficult. Although these two classes of algorithms have more similarities, they also differ
significantly. GA mainly use binary coding, so they can be used to optimise functions with
discrete domains (eg. integer numbers) but also to optimise functions dealing with real
numbers. ES are used in problems that deal exclusively with real numbers. As we observed,
they achieve better results than GA in the field of real numbers problems. Moreover they have
interesting properties not implemented in GA - self adaptation properties.

In this paper we will concentrate on Evolutionary Strategies ES, and their self adaptation
properties, which (in the authors' opinion) make them unique and most valuable among
evolutionary algorithms.

ES were introduced by Schwefel and Rechenberg [4]. In ES a set of potential solutions is
maintained. Because of inspiration from biological systems, each solution is called a
chromosome, and the set of chromosomes is called a population. Each chromosome consists
of two parts: co-ordinates of a point in a solution space (vector x), and parameters of strategy.
Usually, the vector of standard deviations o is used as the strategy parameters. Each o; defines
the standard deviation of Gaussian distribution of x;, which is used during a random change
called mutation. There are two types of ES: (u+A)-ES and (p, A)-ES. They differ in the
selection step - in the case of (u+A)-ES, the next generation is created by selecting p
individuals from p parents and: A:children, and in the case of (i, A)-ES only A children are
taken into account. Sketch of (u+A) Evolutionary Strategy is provided in Fig 1.
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init(Pop(0))
t=0;
while not termination_condition do

begin
Offs(t):= reproduce(Pop(t))
mutate(Offs(t)
Pop(t+1):= selectBest(Pop(t) LOffs(t))
t=1t+1
end

Fig. 1. (u+2) Evolutionary Strategy scheme.
where:
init(Pop(0)) - random initialization of Pop(0), Pop(t) - base population, Offs(?) - offspring,
reproduce(Pop(t)) - function that randomly chooses 1 offspring from m parents,
mutate(Offs(t)) stands for the mutation of the offspring, selectBest(Pop(t) LOffs(t)) is the
selection of the m best individuals from both the m parents and / offspring;

Mutation consists of the following steps:
1.  mutate the values of s;

0,:=0; -exp(r0 -N(O,l) +7-N, (0,1))
where N(0,1) denotes a random value normally distributed with zero mean and standard
deviation equal to one; value of N(0,1) is sampled once for each chromosome and
N;(0,1) is sampled for each allele independently; 7, and 7 are constant.

2.  mutate the values of x

X=X, + 0, -N,.(O,l)

Fig. 2. Mutation scheme.

Note that the standard deyiationsj sj undergo random changes and thus the designer of the

algorithm does not have toi choose explicitly the proper values. Moreover, the self-adaptation
of values of s; has been observed. It has been reported that values of s; tend to decrease as the

algorithm converges.
In this paper we propose to apply the self adaptation approach to the population size (both p
and A). We shall focus on the optimisation of functions which do not change in time.

MOTIVATION '

During opt1m1sat10n there is a trade-off between exploratlon and exploitation. We assume that
there exists dependence of the actual state of the optimisation and the optimal population size
[3]. This dependence arises from the exploration-exploitation balance. At the beginning of the
optimisation, populatlon size should be high, since it increases the possibility to locate the
neighbourhood of the global optimum. As the optimisation progresses, the most promising
areas are located. At this stage, it becomes more important to exploit effectively these areas.
This can be performed more effectively by choosing small values of u. The balance between
exploration and exploitation is called selective pressure (the higher selective pressure, the
stronger exploitation). In the case of ES, selective pressure is adjusted by automatic change of
standard deviations of the distribution used for the mutation. For the first population it seems
efficient to set o; at high level (to allow better exploration). Simulation results show that as
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optimisation goes on, values of o; tend (on average) to decrease. Such a property can be
motivated theoretically.

In the approach we have assumed that in order to explore an entire domain it seems
reasonable to use big population (to enlarge possibility of locating the neighbourhood of
global optimum). However, in order to find local (or global) extreme effectively it is more
efficient to use a small population to allow the search to concentrate on the neighbourhood of
a single optimum (no need for any alternate solutions). Thus (1+1)-ES can be viewed as a
kind of stochastic gradient method and allows to avoid extra computational effort. Up to now,
there was an assumption that p should be constant and each ES designer had to make
compromises and set an average value of u to balance exploration and exploitation. On the
contrary, we propose to allow the value of p to vary over time: at the beginning it should be
high, when the algorithm locates the neighbourhood of the extreme, the value of p should
become equal to 1.

THE ALGORITHM

The algorithm presented below, called ESOP, implements the above considerations. In order
to provide ,,smart" changes of x(t) we have to make its value depend on some measure of
optimisation state. We believe that such convenient measure can be an average value of
standard deviations over all chromosomes in the population g, which can be defined as:

1 M) n .
A

where 7 is the dimensionality of the search space. Value of o tends to decrease as
optimisation progresses, and its decrease is most dramatic when almost all chromosomes
belong to the neighbourhood of the same satisfactory extreme. (Because there is only slight
chance to find better offspring chromosome far away from the parental one, and thus parental
chromosomes with low values of o; produce better offspring which survive the selection). We
introduce a function f(c) to calculate value of u(t+1), and we define it as follows:

1 if o<S8S_MIN
flo)=44_S-0+B_S if S_MIN <g<S_MAX

POP_MAX if o>8_ MAX
where:

POP_ MAX -1

S MAX-S MIN
B S=4 S-S MIN -1

A S=

The parameters S_MIN, S_MAX, POP_MAX must be chosen arbitrarily. We will discuss
their proper values below. [ TR afest TR Bt

The whole algbriﬂﬁﬁ can be written as follows:
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init(Pop(0))
t:=0;
fori:=1toN
begin
while not termination_condition do
begin
Offs(t):= reproduce(Pop(t))
mutate(Offs(t)

Aux(t).:= selectBest(Pop(t) LOffs(t)
calculate l(t+1) and m(t+1)
if m(t+1) < m(t) then
Pop(t+1):=selectBest(Aux(t))
else
begin
I'=L/M * (m(t+1)-m(t))
AuxOffs(t):=reproduce(Aux(t))
Pop(t+1):=selectBest(Aux(t) CAuxOffs(t))
end
t:=1t+1
end
IncreaseSigma(Pop(t), i)
end.
Fig. 4. Sketch of the ESOP algorithm.
where: Aux(t) - auxiliary population needed to expand the base population, AuxOffs(t) -
auxiliary offspring population used during the base population expansion step, in the step
calculate A(t+1) and p(t+1) new values of g(t+1) and A(t+1) are calculated according to the
tanh function, IncreaseSigma(Pop(t), i) is responsible for random increase of the values of

oj.

Discussion of parameters.

There are several parameters in the presented algorithm, whose values must be arbitrarily
chosen: S MIN, S MAX, POP_MAX, and M/ ratio. In the case of the standard evolutionary
strategy there are only 3 parameters: p, A, POP_MAX to be set. In this chapter we will discuss
the parameters and try to reduce their numbers.

The first thing is to set the proper values of S_MIN and S_MAX parameters. Their values
help the f(o) function get proper shape. The motivation of the function f(c) was to help the
strategy during the optimisation process to switch between efficient global and local
optimisation. Thus the change of the number of chromosomes in the population should be
done at a moment, when the neighbourhood of the global extreme has been located and the
chromosomes in the population tend to group in a small area. At this moment value of o
decreases (the chromosomes that survive the selection, with good fitness function value, are
located near parents). There is no need to have a large value of S MAX-S_MIN, due to the
positive feedback mechanism. If the process of decreasing the number of chromosomes in the
population begins, it will go on because weaker chromosomes (such that might represent
alternative solutions) will be deleted from the population, and only the best ones will survive.
While the value of f(o) decreases, it is observed that the value of o decreases also and the
value of average fitness function per population increases dramatically. The conclusion is that
the values of parameters S_MIN and S_MAX should not vary much and should be set to such
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values of o, which indicate that chromosomes in the population tend to group near some
extreme (hopefully global). Our experiments reveal that the efficiency of the algorithm does
not change much for different small values of S MIN and S_MAX. Good values of these
parameters for all tested functions were S MIN=0, S MAX= 0.1. We believe that these
values are good for any fitness function.

To discuss the A/u ratio and POP_MAX parameters let us introduce a parameter named
optimisation power OP, which will be defined as (1+\/p)*POP_MAX. When the optimisation
process is performed by the ESOP algorithm, it can be observed, that some instances find a
global extreme, while others do not. Tt can be also observed, that if the value of OP increases,
the optimisation succeeds more often and for some values of OP it succeeds every time it is
started. The experiments we performed reveal also, that the exact value of A/p ratio and
POP_MAX does not induce considerable changes of the algorithm efficiency, if only the
value of OP is kept unchanged.

This leads us to conclusions, that the only parameter that has to be set properly is the
optimisation power OP. Evolutionary strategies have small chance of success if the OP value
is too small. If this value is too great - efficiency of performing optimisation decreases (but
still global extreme is found). The optimal value of OP depends strongly on fitness function
and is very difficult to find.

We propose to set the A/p ratio to 1, in order to have a (1+1)-ES at the end of optimisation.
We believe that such a strategy is the most efficient in local optimisation.

COMPARISON OF THE NOVEL APPROACH AND THE STANDARD STRATEGY.

In comparison experiments several test functions commonly used in algorithm comparison in
the global optimisation field were used. These were: Goldstein-Price, Camelback and Branin
RCOS function [7]. The definitions of test functions are provided in Fig. 4. The Goldstein-
Price function has a global minimum value of fnin=3 at the point (x;, x2)= (0, -1). The
Camelback function has in the bounded region six local minima, with two global minima
located at the points (X1, x2)= (-0.0898, 0.7126) and (0.0898, -0.7126), where fmin=-1.0316.
The third function - the Branin RCOS function - has three global minima at the points
(x1, X2)= (-7, 12.275), (m, 12.275) and (9.42478, 2.475) with f3in=0.397887.

As evolutionary strategies are used by convention to solve maximisation problems, we used
the negation of all test functions mentioned above. The modified Goldstein-Price function has
a global maximum value of fma=-3, the modified Camelback function has two global
maxima, where finx=1.0316, and the Branin RCOS function taken with negation - has three
global maxima, where fin=-0.397887. I 3.4 ‘
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fGP(xl,xz) = (1~1—(x1 + X, +1)2 -(19—14-x1 +3-x) —14-x,+6-x, - X, +3-x22))-
-(3O+(2-x1 ~3.x,) (18- 323, +12:%7 +48-x, - 36-%, X, +27-x§)),

where x,,x, € [—2, 2]

4
fCM(xl,xz) = (4— 21-x] +%—) X] X, X, +(—4+4-x22)-x§,
where x; € [—3, 3], X, € [—2,2]

fBR(xl,xz) = 01-()62 —b-x{ +c-x —d)2 + e~(1—f)-cos(xl)+ e,
where:

azl,bz_s'%,c:_s_,d:@e:l(),f:_l-
4.7 7 8.7

where x, €[~5,10], x, €[0,15]

Fig. 5. Definitions of test functions.

For each setting of parameters we have carried out 40 independent runs with a randomly
chosen initial population. In the tested algorithms we used two stop criteria. The algorithm
terminates if one of them is achieved. The first criterion is based on the value of 0. If &
decreases below some arbitrarily set threshold value it is assumed that no better extreme will
probably be found and the algorithm terminates. We used threshold value equal to 10°. The
second criterion is patience. It is defined as the number of generations in which average
objective function value per population does not change. It is assumed, that if the average
objective function value per population does not change through specified number of
generations, it means that the algorithm could not find any better results.

The tables given below present results achieved by the ESOP strategy in comparison with
those achieved by the standard (p+2) evolutionary strategy. The numbers in the table are the
costs of strategy measured as the number of fitness function evaluationa at a time, when the
average value of 40 ind'ebendentl runs of algorithm (with random initial population) is not less
than the threshold value given by each table. These values were chosen to be 0.1% lower than
the value of global maximum  of the test function. The places marked ‘-’ mean that the
average value of 40 runs of the algorithm did not achieve threshold value at all. The threshold
values are: 1.0306 for the Camelback function, -0.39828 for Branin function, and -3.003 for
Goldstein-Price function. No crossover operator was used in the ESOP algorithm, nor in the
case of the standard strategy. ‘ i
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S MIN | S _MIN (utA) |no of

— 00 L =0 evaluations

= e .
POP_MAX=20 320] 520 gggi 355
POP_MAX:50 520 500 (10+20) 430
POP MAX=100 | 900| 800 (10+50) -
— e
pOP MAX=20 | 480|480 (20+40) 5
POP_MAX=50 820 840 (20+100) 1020
POP_MAX=100 1460| 1340
Mp=10 .
POP_MAX=20 641| 580
POP_MAX=50 1180| 1300
POP MAX=100 | 2320| 2161

Table 1. Results for the Camelback function achieved by the ESOP algorithm (left) and the
standard (u+1)-ES. :

S_MIN [S_MIN | |(u+}) no of

=0,01 ‘ =0,1 evaluations
A=2 a5 (5+10) 605
POP_MAX=20 620 - (5+25) 555
POP_MAX=50 660| 720 (10+20) 630
POP_MAX-100 | 1000} 1000] |™(i0+50) 760
A=5 : (20+40) 820
POP_MAX=20 600 680 (20+100) 1220

POP_MAX=50 1020 820

POP_MAX=100 1360 _1480"

A=10 g SRR
POP_MAX=20 740|820
POP_MAX=50 | 1360| 1340

POP_MAX=100 2600| 2380

Table 2. Results for the Branin function achieved by the ESOP algorithm (left) and the
standard (u+2)-ES. SRS

From the results collected in tables 1-3 several conclusions can be formulated. The ESOP
algorithm achieves ‘ustﬁally better results than the standard (p+)) evolutionary strategy. The
cost of it is usually lower than the cost of standard algorithm, but what is much more
important, it is much more robust. The ESOP algorithm achieves the results comparable to the
traditional (u+A)-ES with the value@ of p much greater than in the standard case. If the value of
u is greater, especia"lfl'y? at the beginning of 'the optimisation, the chance of finding global
extreme is larger (in the larger population there are higher chances for weaker chromosomes
representing alternate solutions to survive). The value of p in the case of the ESOP algorithm
is initially, when the strategy explores the domain, equal to parameter POP_MAX, which is
significantly greater than in the standard case.

141
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SMIN [S MIN | [(pt+A)  |noof
B " R 1 Y evaluations
A=2 e e (5.}_10) =
POP_MAX=20 - - (5125) pr—
POP_MAX=50 960| 980 (10+20) -
POP_MAX=100 | 1560] -1 (10+50) 1110
A (20+40) 1580
= (20+100) 1720

POP_MAX=50 1280| 1340

POP_MAX=100 2480 i 21()0

A=10

POP_MAX=50 2181 2060

POP_MAX=100 3800| 3500

Table 3. Results for the Goldstein-Price function achieved by the ESOP algorithm (left) and
the standard (u+A)-ES. ‘

CONCLUSIONS

We have introduced a novel approach to the ES. We allow population size to vary over time.
The process is controlled by the stage of the optimisation. We assumed that the average value
of on can be used as an indicator of this stage. The method leads to reduction of the
computational effort needed to achieve comparable results. Moreover our algorithm is more
robust than in the standard case. We also reduced the number of parameters which have to be
properly set from 2 in the standard case (i, A) to 1 (POP_MAX).

The author acknowledge financial support from the Warsaw University of Technology under
Grant 503/033/016/1.
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