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Abstract The paper is devoted to a fundamental problem arising during the
design of optimal networks - maximization of the number of spanning trees. To
make the problem tractable, we considered the class of circulant directed graphs.
We formulated the design problem as a discrete optimization task. To solve the
problem, we used an Evolutionary Algorithm with Varying Population Size, and
introduced problem-specific genetic operators. To test the introduced approach,
we performed number of experiments with different graph structures; the results
are reported in this paper.

1. Introduction

The problem of counting spanning trees in a graph is a fundamental problem in
enumerative combinatorics. The number of spanning trees is considered to be a measure of
graph structural complexity [3]. The aim of a graph synthesis is to design a graph with the fixed
number of points and lines that maximizes the number of spanning trees.

Synthesis of optimal graph is a preliminary step in the design of optimal networks. Let
us assume that a certain attribute is assigned to each of the lines of a graph. This attribute could
be, for example, the probability of line failure. The objective of a network design is to find such
a placement of lines that the probability that a graph representing the network is connected
(i.e. the probability that there exists a connection between any pair of points), is maximized.
If we assume that the probabilities of line failures are independent and identical, then the
problem of designing of optimal network is reduced to the problem of synthesis of a graph
maximizing the number of spanning trees [2].

Synthesis of a graph with the maximum number of spanning trees is, in general case,
the NP hard problem. In this work we restrict ourselves to the class of regular graphs: the
eigenvalue technique provides effective means for counting the number of spanning trees in
such graphs. The class of regular graphs is further limited to the class of circulant graphs to
make the problem of synthesis numerically tractable. Synthesis of optimal circulant graphs is
formulated in this paper as a discrete optimization problem, and solved with the use of the
Evolutionary Algorithm with Varying Population Size.

2. Definitions and Notation |

We shall use the basic terminology as in [5]. G = (¥,X) denotes an undirected or
directed graph without loops having p points and ¢ lines. Points are identified by the numbers
0, 1,... ,p-1. The adjacency matrix A of a graph G is a pxp matrix with the entry aj; equals / if
there is a line directed from the Itk to the jth point and 0 otherwise. If G is an undirected graph
then obviously, A is a symmetrical matrix, i.e. A = AT . The characteristic polynomial of G is
defined as F(A) =det(AI-A), where I is the identity matrix. Roots A1 , A2 ,... , A, of F(}) are
called the eigenvalues of G.
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The degree d; of the Ith point of an undirected graph, the out-degree d; * and the in-
degree d; of the Ith point of a directed graph are defined in the following manner:

p-1 p-1 p-1
d;=>a,, d; =Y a, dy =Y a,, €))
j=1 j=1 i=1

i.e. the degree of a point is the number of lines incident with the point, the out- and in- degrees
are, respectively, the numbers of lines directed away, and to the point. If degrees of all points
of an undirected graph are the same and equal d, then G is called the regular undirected
graph of degree d. If p is even then d can be either even or odd; if p is odd then the value of d
must be even. If the degrees of a directed graph satisfy the condition: dj T=d " =d(=01,..
,p-1), then G is called the regular directed graph of degree d.

The spectrum { A1, Az ,... , A, } of a regular graph has the following properties [3]:

i izk=0, @

- the degree d of G is a c-fold eigenvalue, ¢ - the number of connected components of G.

If Gis connected, then d is a simple eigenvalue,

- magnitudes of all eigenvalues do not exceed d, i.e.

|4, |<d,  k=12,..p (3)
If G is an undirected graph then all eigenvalues are real; if it is directed then eigenvalues are
either real or appear in complex conjugate pairs.

A spanning tree of an undirected connected graph is a connected subgraph of G
spanned over all points of G and containing no cycles. A spanning in-tree of a directed
connected graph with respect to the /#h point is a directed connected graph spanned over all
points of G such that the /th point has out-degree 0 and all others have out-degrees / [5].
Similarly, a spanning out-tree with respect to the /th point is a connected subgraph spanned
over all points of G such that the I#4 point has in-degree 0 and all others have in-degrees I. If
G is a regular directed graph then the numbers of spanning in-trees and out-trees with respect
to any point are the same, i.e. both classes of regular graphs, undirected and directed , have
similar tree counting properties.

In this paper we consider a special class of regular graphs, i.e. circulant graphs. A graph
is said to be circulant if its adjacency matrix A is circulant. A circulant matrix is obtained by
taking an arbitrary first row a,a,,...,a,_, and shifting it cyclically to the right to obtain the
successive rows. We consider graphs without loops, and a, = 0. Obviously, circulant graph is
regular of degree d=a, +a,+..+a,,. If G is undirected then the following symmetry
[=12,..,p—1. Moreover, if dis odd then a, = 1.

2

condition holds: a, = a,_;,

3. Tree counting formula

The number of spanning trees of a directed or undirected regular graph can be
determined with the use of a closed form formula in terms of the graph eigenvalues. Let us
assume that the eigenvalues of G are ordered in such a way that A, =d . The number of

spanning trees can be calculated with the use of the formula [3,6]:

(@)={Tw@-2). @

In general case the problem of finding eigenvalues of a matrix is at least as complex as finding
the number of spanning trees with the use of any other tree counting formula, e.g. the matrix-
tree theorem [7].

11
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Formula (4) becomes numerically effective for circulant graphs. There exists a closed
form formula for calculating eigenvalues of circulant graphs [8,9]:
p-1 27
A=Y aexp(-2k),  k=12,..p (5)
1=1 p
where 7 is the imaginary unit on the complex plane. The formula can be simplified for

undirected graphs by exploiting the property: ;= a,_,; -

2> a, cos(gz kl) if d is even
N ©)
2> aq, cos(i kl] +(-*  ifdis odd
I=1 p
where 7 = —;—)——1 if pis even, and 7 = p;l if p is odd.

Formulae (5,6) together with (4) provide means for effective computation of the
number of spanning trees in circulant graphs.

4. Synthesis of optimal graph - problem formulation

The aim of synthesis of the optimal graph is to design a circulant graph that maximizes
the number of spanning trees. Let us assume that p and d are given and fixed numbers, and
p > 2. The first row of the adjacency matrix contains exactly d elements with the value /. The
problem of designing the optimal graph is indeed a problem of combinatorial optimization:
how to place d elements with the value / in the vector a=[a,,a,,...,a,,]€ Z?™', such the

resulting graph maximizes the number of spanning trees. It can be formulated in the following
manner:

p-1 i
max{t(G>=lH(d—zk>}, ™
P k=1
with respect to a =[a,,a, ...,a,,]1 € Z}™,
p-1
subject to the constraint Y a, =d,
=1

where A, is given by (5,6).

The problem of synthesis of the optimal graph is, in general, NP hard. Several methods
can be tried to attack it. One can perform an exhaustive search and find the best solution. This
method, although guarantees finding an optimum, is extremely computationally intensive. The

number of different graph structures equals (pd ) for the directed graphs. Therefore, an
exhaustive search can be effectively applied only when p is small and d=2 or dap-I1. Another
possible approach is to apply a nondeterministic algorithm, which no more guarantees finding
an optimum, however, the probability to hit the optimum is nonzero. In practice, we could
accept a suboptimal solutions with the objective function value reasonably close to the value at
the optimum.

In our research, we have chosen an Evolutionary Algorithm with Varying Population
Size (EVaPS) as a nondeterministic optimization method. The algorithm maintains population
of a variable size, allowing to tune the size to the needs of the problem being solved [1]. We
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have also introduced the problem-specific genetic operators to improve the EVaPS
performance.

5. Evolutionary algorithm
A sketch of the evolutionary Algorithm with Varying Population Size is given below.

procedure EVaPS§
begin
=0
initialize Pop(0)
evaluate Pop(0)
while not termination_condition do
begin
Off(t):=reproduce (Pop(1))
recombine (Offs(1))
evaluate (Offs(t))
for all a e Pop(1)
age(a):=age(a)+1
Pop(t+1):=Pop(1) LOffs(1)
Pop(t):=Pop()\{a € Pop(t) age(@)>li(a)}
L=t+1
end
end

The algorithm maintains population Pop of chromosomes. The size of the population
can vary over time. In the ,initialize Pop(0)” step, an initial population is randomly created.
During the ,,evaluate Pop(?)” step, an objective function value for each chromosome a in the
population Pop(?) is evaluated. Then, the chromosome lifetime /#(a) is calculated according to
the formula, called the lifetime allocation strategy. The detailed comparative study of different
lifetime allocation strategies is provided in [1]. According to the suggestions in [1], we have
adopted a bilinear strategy for the experiments. The chromosome is kept in the population until
its age age(a) exceeds its lifetime /#(a) - then the chromosome dies off. During the ,reproduce
(Pop(t))” step, an intermediate population Offs(%) is created by copying a constant number of
randomly selected chromosomes (probability of selection is the same for each chromosome in
the population).

During the ,,recombine (Offs(z))” step, chromosomes in the intermediate population
undergo crossover and mutation. Crossover is a binary operator - it takes (randomly selected)
two parents, and produces two children using the parental genetic pool. During mutation, a
randomly selected parental chromosome undergoes a slight perturbance, yielding one offspring.
The detailed description of the genetic operators is provided below.
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5.1 Chromosome encoding
A chromosome is encoded as a string of zeros and ones, which is a natural
representation of the problem. Let us consider an example of the circulant adjacency matrix:

0100 1 01 00
0 010 11010
011 01

A=/0 0 0 1

1 001 1 010 0 0]
For this matrix, the chromosome equals the first row of the adjacency matrix 4 (except of its
first element):

a=[100110100]

The above description fully defines an encoding method for any directed circulant graphs.

5.2 Crossover

We used a special type of crossover, which preserves the number of ones in the
chromosome (see [4]). The crossover is performed in the following way:

Firstly, each of the chromosomes being crossed-over is divided into blocks - substrings
of adjacent bits. For each block, the number of ones equals the number of ones in the
corresponding block in the second parental chromosome.

To make it more formal, let us assume that / and 7 stand for the leftmost and rightmost
position of a block. Each parental chromosome @ can be written down as follows:

A=[A) ey Oy s B yene Oy s Bpigsnsrs@p ]
Then the above condition can be formulated as

Z ail = Zaiz 5
i=l i=l
where a!; and & denote the i-th bit of the first and second parental chromosome,
respectively.

Secondly, corresponding blocks are exchanged with probability 0.5.(see Fig. 1 for an
example).

before crossover: after crossover:
10110001001 100110600011
01/011000011 01110001001

Fig. 1 Example of crossover. Perpendicular lines reveal borders between blocks.
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5.3 Mutation
During mutation, two bits from the chromosome are randomly chosen, and their values
are interchanged, which guarantees preservation of the number of ones (see [4]).

before mutation: after mutation:

10110001001 10100001101

b

Fig. 2. Example of mutation. Arrows point to the bits undergoing mutation.

6. Experiments and results

For the purpose of testing of the evolutionary approach, we performed a series of
experiments. In each experiment 10 independent runs of the evolutionary algorithm were
performed, and additionally we did an exhaustive search through the whole space of graphs (if
it was possible because of the problem dimensionality). The aim was to maximize the number
of spanning trees for the directed circulant graphs.

In the following tables, the results of the evolutionary algorithm are listed. These data
come from 10 independent EVaPS runs. Value of D equals the number of all possible
solutions, whereas value of F equals the number of the objective function calls to obtain the
solution, divided by the value of D. Value of E equals the relative error of the solution found
by the evolutionary algorithm

= f best f EVaPS
fbest

where fivaps and fis denote the objective function value for the solution found by the
EVaPS and the true optimum. The value of M equals

2

M: fMC

f EVaPS ’
where fic denotes the best objective function value found by the Monte Carlo method.

For p=20 and p=21I, an additional, exhaustive search through all solutions was
performed in order to obtain a full spectrum of the objective function values just to compare
the results of EVaPS and of the enumerative method. In all cases not less than 15 first
significant digits of the objective function value were identical for the true optimum, and for
the solution found by EVaPS. From the results in Tab.1 and Tab.2 it evidences that for a large
problem space, it is enough for EVaPS to search through less than 10% solutions to find a very
good one (or even the best one).

1330 |20349 | 116280 |293930 |[352716 |203490 |54246 5985
0354 |0.101 [0.0339 [0.0131 |[0.0146 |0.0123 [0.0508 |0.566
0 0 107 10° 10° 0 0 0

Tab. 2 Simulation results for p=21.

d |2 4 6 8 10 12 14 18
D 190 [4845 [38760 |[125970 | 184756 | 125970 | 38760 |190

F |7.45 [0.285 |0.0972 |0.0506 [0.0401 [0.0178 |0.0662 |19.04
E |0 0 0 107 |10 10" 107 [107°
Tab. 1 Simulation results for p=20.

d |3 5 7 9 11 13 15 17
D

F

E
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Now, let us look at the results for p>30. For these values of p, it was computationally too
expensive to perform an exhaustive search, and the capacity needs to store the data were
extremely high. Therefore, as a comparative data we took the results of a Monte Carlo analysis.
We performed a random sampling using the number of samples equal to the number of the
objective function calls generated by the EVaPS$ algorithm. For high values of d, the number of
spanning trees exceeded the floating point range. Therefore, the data are incomplete.

d 2 4 6 8 10 12 14 16 18 20
D 435 | 2.74x10° |5.94x10° |5.85x10° |3.01x107 |8.65x10” |1.45x10° |1.45x10® | 8.65x10 [3.01x10’
F 1.15 |5.29x102 | 6.64x107 | 1.77x102 |3.02x10™* [8.39x107 [ 9.32x10”° | 8.92x10° | 1.27x10™* | 2.99x10"
M |10 |10 1.0 0.95 0.91 0.97 0.99 0.99 0.98 0.97
Tab.3 Simulation results for p=30.

d |3 5 7 9 11 13 15 17 19

D |4.49x10° | L.69x10° |2.63x10° | 2.02x10" | 8.47x107 |2.06x10° [3.01x10° |2.65x10° |1.41x10’

F 1047 1.37x102 | 2.05x10° | 4.10x10” | 1.12x10” | 5.18x10° [3.93x10° [5.20x10° | 7.87x10”

F |10 0.88 0.90 0.89 0.98 0.97 0.99 0.98 0.98

Tab.4 Simulation results for p=31.

d g2 4 6 8 10

D 780 [9.14x10* [3.84x10° [7.69x107 |8.47x10°

F 2.53 [3.02x102 [1.25x10 [9.04x10° |1.18x10”

M |10 [1.0 0.84 0.78 0.80

Tab.5 Simulation results for p=40.

d 3 5 7 9

D 2128 |7.49x10° |2.25x10" [3.50x10°

F 0.19 [7.41x10° [3.08x10™ [2.82x10°

M |10 [1.0 0.80 0.80

Tab.5 Simulation results for p=41.

d |2 4 6
D |1.22x10° [2.30x10° |1.59x10’
F 10.99 1.34x102% |2.92x10*
M |10 0.77 0.74

d |3 5
D |[2.08x10* [2.35x10°
F [0.87 1.74x102
M |10 1.0

Tab.6 Simulation results for p=350.

Tab.6 Simulation results for p=51.

7. Conclusions
The percentage of possible solutions taken into account by the EVaPS algorithm
decreases with the increase of the number of solutions for this particular type of a problem.
This allows to deal with the great number of solutions within a reasonable time, and indicates
that EVaPS§ is not an enumerative algorithm.
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While the number of possible solutions increases, the Monte Carlo method reveals
inferior performance than EVaPS. This indicates a better EVaPS convergence.

For simple problems (small p and d=2 or d~p-1 ) it seems unnecessary to apply EVaP$S
- either enumerative, or a Monte Carlo method will be powerful enough to find the global
optimum.

It should be reminded that solutions obtained by EVaPS are not guaranteed to be the
optimal ones, however it seems that for the problem under consideration there exists a set of
suboptimal solutions with the objective function value approximately equal to the global
maximum.
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