
A Campus Grid Using Globus and MOSIX

Adam Kozakiewiczy, Andrzej Karbowskiyz

y Warsaw University of Technology,

Institute of Control and Computation Engineering,

Nowowiejska 15/19,

00-665 Warsaw, POLAND,

akozakie@ia.pw.edu.pl

z NASK (Research and Academic Computer Network),

W¡wozowa 18,

02-796 Warsaw, POLAND

Abstract: A simple architecture for a campus-wide grid utilizing the resources of com-

puter laboratories is presented. The environment combines the Globus Toolkit with MOSIX,
and is mostly designed for MPI applications. A small experimental grid was set up and tested

on a real-life example � �nding an eigenvector of a large sparse matrix (Google's PageRank

algorithm).

1 Introduction

Even though computing power is necessary in many scienti�c applications, universities often
lack su�cient resources for a real, expensive HPC center. In place of a supercomputer, clusters

appear as a good solution for most problems, but even they are far from being cheap. At the

same time a lot of processing power is lost in computer laboratories, left unused for many

hours a day.
Connecting available computers into a grid can o�er considerable computing power, al-

though rather restricted to coarse grain computations. Such a solution is cheap and can be

quite easy to use. Using laboratories regularly occupied by students is a bit di�erent than

connecting regular workstations and some new problems have to be dealt with.

In this paper we show how to build such a grid by combining several available software tools
into a single system, which, although complicated in structure, can be used by researchers

with reasonable experience almost without preparation or learning new commands. Section 2
deals with the details, including a description of a small proof-of-concept test grid. The grid

was tested using a real-life example � an implementation of the Google PageRank algorithm.

The problem and test results are described in section 3. We �nish the paper with some general

notes and observations in section 4.

wm wm
Materiały VII Krajowej Konferencji Algorytmy Ewolucyjne i Optymalizacja Globalna, 243-250
Kazimierz Dolny, 24-26 maja 2004

2 The Grid

The most direct approach to building a grid is to run parts of computing tasks on individual

computers, using some form of a remote access tool with a built-in scheduler. Such a solution

already exists and is well tested (Condor: [1], [2]).

The problem with such a grid is its heterogeneity. Computer laboratories run di�erent
operating systems, often multi-boot. Connecting them into a single grid would reduce the

total computing power, unless the user makes the extra e�ort to make di�erent systems

communicate (possible, but often di�cult). Moreover, computers in the labs may only be

connected to the grid at night and sometimes during the day and it would be a di�cult job

for a grid-wide migration system.

Similar results can be achieved with a di�erent, two-layer architecture. In this case the

computers are organized into separate clusters, dealing with most reliability problems, and

the clusters are connected into a grid as larger virtual machines.

2.1 System Architecture and the Choice of Tools

The two layers � the upper, grid layer of the system, connecting computer rooms to create a

single virtual machine, and the lower, cluster layer, connecting the machines in one room to
o�er their resources in the grid as a single virtual machine are completely di�erent. Di�erent
problems arise and di�erent software solutions are used in both cases.

Both layers are uni�ed from the end users' point of view. The end user doesn't need to

know the details of the implementation, as for him the grid is simply an MPI-based cluster. We

concentrate on MPI, since it is a standard, well known environment for parallel computations
on distributed memory machines.

2.1.1 The Cluster Layer

In this layer we deal with a set of machines under control of one administrator. The machines

need to be detached from the grid during the courses and reattached afterwards. Ideally, the
process should not involve the administrator, it should be simple enough to be carried out by

the students or teachers leaving the room. The machines cannot be a part of the grid when

students work with them, since the machine could be incorrectly rebooted, killing the tasks
being processed. If only part of the machines is used during laboratory classes, then the rest

can still be connected to the cluster.

As the cluster's computing power changes in time, making individual machines visible

from the MPI level would introduce a new problem: how to add and remove machines during

computation? Process migration is not a simple task.
The suggested solution uses a MOSIX ([3], [4], [5]) cluster and a dedicated machine in

each room. Only this dedicated machine is visible as a part of the grid, and it is the only
one with MPI installed. All processes are running on this machine. When other machines are

connected during computation, they share the load as MOSIX migrates part of the processes

to them. From the grid level the cluster is a single machine with variable computing power.

The cluster can also be used separately, disconnected from the grid � tasks can simply be run

from the access station, or, as a matter of fact, from any station.

For computers working by default under Linux the con�guration is trivial and (dis)attaching
them from the cluster is done simply by starting or stopping the mosix service. Computers

wm wm
244

running other operating systems have to be rebooted to Linux to join the cluster. As the
stations, except the dedicated access point, don't need much except the kernel, a simple

bootable �oppy or CD seems to be the best choice. Although preparing the �rst one requires

some work, copies for other machines need few changes. This approach is not only su�ciently

simple and feasible, it also deals with the issue of software heterogeneity by eliminating it.

2.1.2 The Grid Layer

In this layer we have to connect several rooms with di�erent security policies, account names,

passwords, and so on. This is a situation typical for a true grid and requires grid software.

We chose the Globus Toolkit 2.4 ([6]), as it is rather popular, well tested and well inte-

grated with MPI (MPICH-G2, see [7], [8]). The Globus Toolkit provides uniform login using

certi�cates, simplifying the construction of the grid.

The communication between processes is provided by the MPICH-G2 package � an imple-

mentation of MPI 1.1 using Globus as the communication device. Unfortunately, this type of

communication is not very e�cient. However, our tests show that the speed is su�cient to

make the grid useful, and the e�ciency cost of using Globus may be negligible in the case of
very long computations (hours, days, weeks) with minimal communication.

While the cluster layer is limited to one architecture (x86), using Globus it is possible to

also connect other machines to the grid if desired. It may be possible to propose di�erent

cluster-layer solutions for other architectures, alternatively machines can be connected directly
to the grid layer.

2.2 Test Grid

For testing we have used 9 computers from our small MOSIX cluster (a total of 11 � Pentium

III/450MHz/128MB, running RedHat Linux 7.3, kernel 2.4.22 + MOSIX 1.10.1). We have

recon�gured those machines into two separate clusters � 4 and 5 machines.
On one machine from each group we installed the Globus Toolkit 2.4 � resource man-

agement client, server and SDK. On top of it we built MPICH-G2, only those two machines
were connected on the MPI level. This con�guration allowed us to test running programs on

one machine, two machines and two clusters. The setup is shown in Figure 1. The clusters

�MOSIX A� and �MOSIX B� are separate. Only standard migration takes place, all messag-
ing is done as if all processes still were on the same computer. The �MPI� section is the test
�grid�. Job execution is done using the Globus Toolkit.

Some con�guration problems were found when connecting the two layers. The Globus

Gatekeeper, the daemon responsible for running remote jobs, is started by the xinetd daemon.

Under MOSIX, xinetd and most other daemons, are �locked�, i.e. cannot migrate. This

state is inherited by child processes, so without changes the processes would never leave the
section �MPI�. The �rst solution was to have the programs unlock themselves. It helped, but

the MPI-enabled stations still were overwhelmed by processes spawned by the Globus tools.

The solution is to con�gure the gatekeeper service as migratable (running it via mosrun -l)

� in this case not only can the programs skip unlocking themselves in this case, but the

communication processes will migrate too! As can be seen in the next section, after this
change the cluster tolerates many processes well.

wm wm
245

MOSIX B

12

2 1

8

9

7
5

4
3

MOSIX A

MPI

GLOBUS

Figure 1: The setup of the test grid.

3 The Test Problem

For testing we have chosen a large scale linear algebra problem. We implemented the numerical
core of Google PageRank algorithm for ranking WWW pages, which is in fact a calculation

of an eigenvector using the power method (see [9], [10], [11]).

3.1 The Google PageRank Algorithm

The PageRank algorithm attempts to rank pages so that the most often referred to pages get
the highest ranking. Additionally, it attempts to give more weight to links from pages with

few links.

The links are represented by a binary n � n matrix G, usually huge (at the moment

Google is said to use n � 4:3 � 109) and very sparse. Each page is characterized by two values:

in-degree cj =
P

i gij and out-degree ri =
P

j gij.
The model describes a motion of a random user, following with probability p random links

from each page he visits, and with probability 1� p jumping to a di�erent address, ignoring

existing links.

The matrix A, de�ned as follows:

aij = pgij=cj + (1� p)=n (1)

is a probability matrix of a Markov chain. The sums of all columns are equal to 1. According

to the Perron-Frobenius theorem the largest eigenvalue of this matrix is equal to one. The

respective eigenvector is the solution to the equation x = Ax. The elements of this vector,
normalized so that

P
i xi = 1, are the steady-state probability distribution of the Markov

chain and are interpreted as PageRank of respective pages.

wm wm
246

The simplest (and scalable) algorithm of solving this problem is the iteration:

xk+1 = Axk: (2)

The algorithm is partially asynchronously convergent, see e.g. [12].

3.2 Implementation

The algorithm has been implemented in a simple way, without excessive optimization. The

matrix A can potentially be huge, so it is always stored in a sparse form. The program

is written using MPI, according to the SPMD (Single Program Multiple Data) rule. The

matrix A is split between processes, each computes a di�erent subvector of x. To minimize
communication penalties and to utilize the asynchronous properties of the algorithm, the
multiplication of a subvector in each process is repeated until a local solution is found, only

then messages with results are exchanged and the next iteration begins.

To get the maximum gain from MOSIX process migration, our program declares itself as

a cpu-intensive task. Without it, the migration takes a bit more time � the statistics gathered
during the loading of data from disk, discourage migration, as the process is identi�ed as an
I/O-oriented task. Processes collide on their home machine for several seconds in this case,

until the old statistics decay and new ones are collected.

3.3 Test Results

During the tests the PageRank algorithm was run for 25000 pages and for 1000 pages, in

di�erent con�gurations, with the same data (matrix A). The larger task was well suited for

distribution, the smaller one was too short � a stress test of the MPI's remote job management
and communication procedures.

On a single machine and without decomposition (no communication, local and global
convergence are the same) the larger task was done in 8 minutes. The time can be further

reduced to 6 minutes and 8 seconds by removing all MPI-related code and, unnecessary in
this case, the �nal iteration (verifying convergence). Decomposition introduced the need

for communication and multiple iterations, slowing the computation down to 17 minutes,

more if more processes were created. As we were testing the grid infrastructure, not the
e�ectiveness of the decomposition itself, this is the reference time for calculating gains in
parallel con�gurations.

To make use of the network, we connected two machines with MPI, but without activating

MOSIX on them. We ran two tests, one with 2 processes, 1 per machine, and the other with

9 processes, our planned decomposition level for full cluster. The results for 9 processes are

good, but de�nitely worse than without decomposition.
Finally, we activated the MOSIX clusters. The computation was done in under 5 minutes.

The 9 machines not only ran the program much faster than one machine, but decomposition

actually proved useful � the cluster was much faster than a single machine with optimized,

non-distributed code. At the same time the cluster's total memory potentially allows solving
even larger tasks.

All results are summarized in Table 1.

We also tested turning individual machines on and o� (of course except the two nodes

using MPI). As long as the system was closed properly, the calculation was not seriously

hampered by this.

wm wm
247

Task size 25000 pages 1000 pages

A single machine, 1 process 8:00 12.7

A single machine, 2 processes 17:00 14.2

A single machine, 9 processes 20:43 40.0

A single machine, 18 processes 26:54 1:22.6

2 machines via MPI, 2 processes 8:01 13.3

2 machines via MPI, 9 processes 11:45 28.8

2 machines via MPI, 18 processes 12:40 46.2

9 machines total, 2 via MPI, the rest share the

load via MOSIX. 9 processes

4:42 32.0

Same as above, 18 processes 5:52 56.9

Table 1: Times (minutes:seconds) required to solve an example problem on di�erent con�g-

urations. The same problem can be solved without decomposition or MPI in 6 minutes 8

seconds (25000 pages) and just under 2 seconds (1000 pages).

4 Conclusions

The approach presented in this paper works well. The combination of MPI working on few

dedicated machines, physically isolated from users, and MOSIX spreading the load to other
stations, connected only when available, allows for very comfortable and fast computation and

utilization of computing reserves. Only a relatively small gain was achieved in comparison with

the non-distributed algorithm, but the distributed version showed huge increase in speed with
parallelization. The weak point is obviously the decomposition method, not the grid stucture.

Spreading tasks from one or two nodes to the rest of the cluster by using MOSIX process
migration mechanisms is not optimal. It would theoretically be better to use MPI to spread

the tasks to all machines from the beginning, and only let MOSIX manage the loads if tasks

di�er in complexity. Our setup has the advantage of being far more elastic � all machines in
the cluster except the �access point�, where MPI is installed, can be detached and reattached

during computation, for example during courses. The cost of nonoptimal initial dislocation

of processes is negligible for large tasks.

Neither MOSIX nor MPI is a high reliability environment. If a computer crashes for any

reason, or is simply turned o� without closing the system correctly, the processes running on

it will be lost. The design encourages detaching computers from the grid before classes, but

a danger still exists. Therefore, programs for the grid should be written for reliability and

fault tolerance, if they are expected to run excessively long. Using advanced capabilities of
the Globus Toolkit is advised.

The use of Globus as an MPI device to connect the clusters is a good choice from the

security standpoint and allows for better administration of resources, but the penalties are

noticeable. Using Globus inside a single, isolated cluster would be a waste of resources. It is

only needed, when several clusters with di�erent user names, policies and system setup are

connected into a grid. A good way of dealing with the slowness of Globus in our example
might be to use an MPI �avor of Globus (a version of Globus using an implementation of

MPI for local passing of messages). This would allow faster local (in-cluster) communication.
Unfortunately we couldn't achieve such a setup due to a lack of a suitable MPI implementation

wm wm
248

(non-MPICH based and not LAM).
The MOSIX clusters should be relatively small � up to about 10 machines. There are

two reasons for it. First, while MOSIX scales well, with size of the cluster the amount of

communication necessary for intelligent migration, grows. More importantly, however, when

the cluster is deactivated, all the tasks reside on the access station and slowly continue running.
With the processes started by Globus it might be enough to almost freeze the machine, leading

to many problems. The number of processes on one cluster should be kept small. In large

laboratories there might be a need for multiple access stations.

The grid built this way is also very easy to use. The user only needs to know that he should

use the grid-proxy-init command to login and grid-proxy-destroy to logout. That, and

familiarity with MPI, especially the MPICH implementation, su�ces. The system behaves

mostly like a simple cluster.

The structure shown in this paper is easy to set up. It can be suggested, wherever a

large MPI computation is necessary and several smaller clusters can be connected. Because

MOSIX o�ers dynamic load balancing, such a setup handles tasks with wildly varying sizes

remarkably well, much better than typical MPI environments, where tasks are statically

allocated to machines. The tasks cannot be migrated between clusters (by MOSIX), so the
initial distribution is still important.

Summing up, we have shown how Globus and MOSIX can be combined to create an

elastic and e�cient grid for MPI calculations. We have shown, that it can indeed speed up
large calculations, while using it for smaller tasks is a mistake � the costs of spawning remote

processes are too high.

5 Acknowledgement

The research presented in this paper was partially supported by the Foundation for Polish

Science.

References

[1] M. Litzkow, M. Livny, M. Mutka, �Condor � A Hunter of Idle Workstations�, Proc. 8-th

International Conference on Distributed Computing Systems�, pp. 104-111, June 1988

[2] The Condor project homepage, http://www.cs.wisc.edu/condor

[3] A. Barak, O. La'adan, �The MOSIX Multicomputer Operating System for High Perfor-

mance Cluster Computing�, Journal of Future Generation Computer Systems, Vol. 13,

No. 4-5, pp.361-372, March 1998

[4] A. Barak, O. La'adan, A. Shiloh, �Scalable Cluster Computing with MOSIX for LINUX�,
Proc. 5-th Annual Linux Expo, pp. 95-100, Raleigh, May 1999

[5] The MOSIX project homepage, http://www.mosix.com

[6] The Globus project homepage, http://www.globus.org

wm wm
249

[7] N. Karonis, B. Toonen, and I. Foster, �MPICH-G2: A Grid-Enabled Implementation of
the Message Passing Interface�, Journal of Parallel and Distributed Computing (JPDC),

Vol. 63, No. 5, pp. 551-563, May 2003.

[8] The MPICH-G2 project homepage, http://www.hpclab.niu.edu/mpi/

[9] L. Page, S. Brin, R. Motwani, T. Winograd, �The PageRank Citation Ranking: Bringing

Order to the Web�, http://dbpubs.stanford.edu/pub/1999-66

[10] A. Arasu, J. Novak, A. Tomkins, J. Tomlin, �PageRank Computation and the Struc-

ture of the Web: Experiments and Algorithms�, World Wide Web 2002 Conf.,

http://www2002.org/CDROM/poster/173.pdf

[11] C. Moler, �The World's Largest Matrix Computation�, MathWorks Company Newslet-

ter, http://www.mathworks.com/company/newsletters/news_notes/clevescorner/

oct02_cleve.shtml

[12] D. P. Bertsekas, J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Meth-

ods, PrenticeHall, Englewood Cli�s, NJ, 1989

wm wm
250

